Skip to main content
Log in

Electronic structure of designed [(SnSe)1+δ]m[TiSe2]2 heterostructure thin films with tunable layering sequence

  • 2D and Nanomaterials
  • Invited Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A series of [(SnSe)1+δ]m[TiSe2]2 heterostructure thin films built up from repeating units of m bilayers of SnSe and two layers of TiSe2 were synthesized from designed precursors. The electronic structure of the films was investigated using X-ray photoelectron spectroscopy for samples with m = 1, 2, 3, and 7 and compared to binary samples of TiSe2 and SnSe. The observed binding energies of core levels and valence bands of the heterostructures are largely independent of m. For the SnSe layers, we can observe a rigid band shift in the heterostructures compared to the binary, which can be explained by electron transfer from SnSe to TiSe2. The electronic structure of the TiSe2 layers shows a more complicated behavior, as a small shift can be observed in the valence band and Se3d spectra, but the Ti2p core level remains at a constant energy. Complementary UV photoemission spectroscopy measurements confirm a charge transfer mechanism where the SnSe layers donate electrons into empty Ti3d states at the Fermi energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. A.K. Geim and I.V. Grigorieva: Van der Waals heterostructures. Nature 499, 419 (2013).

    Article  CAS  Google Scholar 

  2. A.C. Ferrari, F. Bonaccorso, V. Fal’ko, K.S. Novoselov, S. Roche, P. Bøggild, S. Borini, F.H.L. Koppens, V. Palermo, N. Pugno, J.A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhänen, A. Morpurgo, J.N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G.F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A.N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G.M. Williams, B.H. Hong, J-H. Ahn, J.M. Kim, H. Zirath, B.J. van Wees, H. van der Zant, L. Occhipinti, A.D. Matteo, I.A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S.R.T. Neil, Q. Tannock, T. Löfwander, and J. Kinaret: Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 7, 4598 (2015).

    Article  CAS  Google Scholar 

  3. A. Kuc, T. Heine, and A. Kis: Electronic properties of transition-metal dichalcogenides. MRS Bull. 40, 577 (2015).

    Article  CAS  Google Scholar 

  4. J.A. Robinson: Growing vertical in the flatland. ACS Nano 10, 42 (2016).

    Article  CAS  Google Scholar 

  5. K.S. Novoselov, V.I. Fal’ko, L. Colombo, P.R. Gellert, M.G. Schwab, and K. Kim: A roadmap for graphene. Nature 490, 192 (2012).

    Article  CAS  Google Scholar 

  6. C.R. Dean, A.F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K.L. Shepard, and J. Hone: Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722 (2010).

    Article  CAS  Google Scholar 

  7. A.S. Mayorov, R.V. Gorbachev, S.V. Morozov, L. Britnell, R. Jalil, L.A. Ponomarenko, P. Blake, K.S. Novoselov, K. Watanabe, T. Taniguchi, and A.K. Geim: Micrometer-scale ballistic transport in encapsulated graphene at room temperature. Nano Lett. 11, 2396 (2011).

    Article  CAS  Google Scholar 

  8. C. Grosse, M.B. Alemayehu, A. Mogilatenko, O. Chiatti, D.C. Johnson, and S.F. Fischer: Superconducting tin selenide/niobium diselenide ferecrystals. Cryst. Res. Technol. 52, 1700126 (2017).

    Article  CAS  Google Scholar 

  9. K. Kang, K-H. Lee, Y. Han, H. Gao, S. Xie, D.A. Muller, and J. Park: Layer-by-layer assembly of two-dimensional materials into wafer-scale heterostructures. Nature 550, 229 (2017).

    Article  CAS  Google Scholar 

  10. G. Wiegers: Misfit layer compounds: Structures and physical properties. Prog. Solid State Chem. 24, 1 (1996).

    Article  CAS  Google Scholar 

  11. J. Rouxel, A. Meerschaut, and G. Wiegers: Chalcogenide misfit layer compounds. J. Alloys Compd. 229, 144 (1995).

    Article  CAS  Google Scholar 

  12. D. Merrill, D. Moore, S. Bauers, M. Falmbigl, and D. Johnson: Misfit layer compounds and ferecrystals: Model systems for thermoelectric nanocomposites. Materials 8, 2000 (2015).

    Article  CAS  Google Scholar 

  13. F. Withers, O.D. Pozo-Zamudio, A. Mishchenko, A.P. Rooney, A. Gholinia, K. Watanabe, T. Taniguchi, S.J. Haigh, A.K. Geim, A.I. Tartakovskii, and K.S. Novoselov: Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Nat. Mater. 14, 301 (2015).

    Article  CAS  Google Scholar 

  14. K.S. Novoselov, A. Mishchenko, A. Carvalho, and A.H.C. Neto: 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016).

    Article  CAS  Google Scholar 

  15. Y. Liu, N.O. Weiss, X. Duan, H-C. Cheng, Y. Huang, and X. Duan: Van der Waals heterostructures and devices. Nat. Rev. Mater. 1, 16042 (2016).

    Article  CAS  Google Scholar 

  16. M. Esters, M.B. Alemayehu, Z. Jones, N.T. Nguyen, M.D. Anderson, C. Grosse, S.F. Fischer, and D.C. Johnson: Synthesis of inorganic structural isomers by diffusion-constrained self-assembly of designed precursors: A novel type of isomerism. Angew. Chem., Int. Ed. 54, 1130 (2015).

    Article  CAS  Google Scholar 

  17. R. Westover, R.A. Atkins, M. Falmbigl, J.J. Ditto, and D.C. Johnson: Self-assembly of designed precursors: A route to crystallographically aligned new materials with controlled nanoarchitecture. J. Solid State Chem. 236, 173 (2016).

    Article  CAS  Google Scholar 

  18. M. Beekman, C.L. Heideman, and D.C. Johnson: Ferecrystals: Non-epitaxial layered intergrowths. Semicond. Sci. Technol. 29, 064012 (2014).

    Article  CAS  Google Scholar 

  19. C. Wan, Y. Wang, N. Wang, and K. Koumoto: Low-thermal-conductivity (MS)1+x(TiS2)2 (M = Pb, Bi, Sn) misfit layer compounds for bulk thermoelectric materials. Materials 3, 2606 (2010).

    Article  CAS  Google Scholar 

  20. D.R. Merrill, D.B. Moore, J. Ditto, D.R. Sutherland, M. Falmbigl, M. Winkler, H-F. Pernau, and D.C. Johnson: The synthesis, structure, and electrical characterization of (SnSe)1.2(TiSe)2. Eur. J. Inorg. Chem. 2015, 83 (2015).

    Article  CAS  Google Scholar 

  21. Z. Li, S.R. Bauers, N. Poudel, D. Hamann, X. Wang, D.S. Choi, K. Esfarjani, L. Shi, D.C. Johnson, and S.B. Cronin: Cross-plane Seebeck coefficient measurement of misfit layered compounds (SnSe)n(TiSe2)n (n = 1, 3, 4, 5). Nano Lett. 17, 1978 (2017).

    Article  CAS  Google Scholar 

  22. D.M. Hamann, D.R. Merrill, S.R. Bauers, G. Mitchson, J. Ditto, S.P. Rudin, and D.C. Johnson: Long-range order in [(SnSe)1.2]1[TiSe2]1 prepared from designed precursors. Inorg. Chem. 56, 3499 (2017).

    Article  CAS  Google Scholar 

  23. D.M. Hamann, A.C. Lygo, M. Esters, D.R. Merrill, J. Ditto, D.R. Sutherland, S.R. Bauers, and D.C. Johnson: Structural changes as a function of thickness in [(SnSe)1+δ]mTiSe2 heterostructures. ACS Nano 12, 1285 (2018).

    Article  CAS  Google Scholar 

  24. E. Morosan, H.W. Zandbergen, B.S. Dennis, J.W.G. Bos, Y. Onose, T. Klimczuk, A.P. Ramirez, N.P. Ong, and R.J. Cava: Superconductivity in CuxTiSe2. Nat. Phys. 2, 544 (2006).

    Article  CAS  Google Scholar 

  25. E. Morosan, K.E. Wagner, L.L. Zhao, Y. Hor, A.J. Williams, J. Tao, Y. Zhu, and R.J. Cava: Multiple electronic transitions and superconductivity in PdxTiSe2. Phys. Rev. B 81, 094524 (2010).

    Article  CAS  Google Scholar 

  26. F. Göhler, G. Mitchson, M.B. Alemayehu, F. Speck, M. Wanke, D.C. Johnson, and T. Seyller: Charge transfer in (PbSe)1+δ(NbSe2)2 and (SnSe)1+δ(NbSe2)2 ferecrystals investigated by photoelectron spectroscopy. J. Phys.: Condens. Matter 30, 055001 (2018).

    Google Scholar 

  27. D.C. Johnson: Controlled synthesis of new compounds using modulated elemental reactants. Curr. Opin. Solid State Mater. Sci. 3, 159 (1998).

    Article  CAS  Google Scholar 

  28. D.M. Hamann, D. Bardgett, D.L.M. Cordova, L.A. Maynard, E.C. Hadland, A.C. Lygo, S.R. Wood, M. Esters, and D.C. Johnson: Sub-monolayer accuracy in determining the number of atoms per unit area in ultrathin films using X-ray fluorescence. Chem. Mater. 30, 6209 (2018).

    Article  CAS  Google Scholar 

  29. D.B. Moore, L. Sitts, M.J. Stolt, M. Beekman, and D.C. Johnson: Characterization of nonstoichiometric Ti1+xSe2 prepared by the method of modulated elemental reactants. J. Electron. Mater. 42, 1647 (2013).

    Article  CAS  Google Scholar 

  30. J. Chen, D.M. Hamann, D. Choi, N. Poudel, L. Shen, L. Shi, D.C. Johnson, and S. Cronin: Enhanced cross-plane thermoelectric transport of rotationally disordered SnSe2 via Se-vapor annealing. Nano Lett. 18, 6876 (2018).

    Article  CAS  Google Scholar 

  31. L. Makinistian and E.A. Albanesi: On the band gap location and core spectra of orthorhombic IV–VI compounds SnS and SnSe. Phys. Status Solidi B 246, 183 (2009).

    Article  CAS  Google Scholar 

  32. J.C.E. Rasch, T. Stemmler, B. Müller, L. Dudy, and R. Manzke: 1T-TiSe2: Semimetal or semiconductor? Phys. Rev. Lett. 101, 237602 (2008).

    Article  CAS  Google Scholar 

  33. S. Doniach and M. Sunjic: Many-electron singularity in X-ray photoemission and X-ray line spectra from metals. J. Phys. C: Solid State Phys. 3, 285 (1970).

    Article  CAS  Google Scholar 

  34. G.D. Mahan: Collective excitations in X-ray spectra of metals. Phys. Rev. B 11, 4814 (1975).

    Article  CAS  Google Scholar 

  35. A.S. Shkvarin, Y.M. Yarmoshenko, N.A. Skorikov, M.V. Yablonskikh, A.I. Merentsov, E.G. Shkvarina, and A.N. Titov: Electronic structure of titanium dichalcogenides TiX2 (X = S, Se, Te). J. Exp. Theor. Phys. 114, 150 (2012).

    Article  CAS  Google Scholar 

  36. D.A. Shirley: High-resolution X-ray photoemission spectrum of the valence bands of gold. Phys. Rev. B 5, 4709 (1972).

    Article  Google Scholar 

  37. T. Ohta, A. Bostwick, J.L. McChesney, T. Seyller, K. Horn, and E. Rotenberg: Interlayer interaction and electronic screening in multilayer graphene investigated with angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 98, 206802 (2007).

    Article  CAS  Google Scholar 

  38. A. Bostwick, T. Ohta, J.L. McChesney, K.V. Emtsev, T. Seyller, K. Horn, and E. Rotenberg: Symmetry breaking in few layer graphene films. New J. Phys. 9, 385 (2007).

    Article  CAS  Google Scholar 

  39. K.V. Emtsev, F. Speck, T. Seyller, L. Ley, and J.D. Riley: Interaction, growth, and ordering of epitaxial graphene on SiC{0001} surfaces: A comparative photoelectron spectroscopy study. Phys. Rev. B 77, 155303 (2008).

    Article  CAS  Google Scholar 

  40. J. Brandt, L. Kipp, M. Skibowski, E. Krasovskii, W. Schattke, E. Spiecker, C. Dieker, and W. Jäger: Charge transfer in misfit layered compounds. Surf. Sci. 532, 705 (2003).

    Article  CAS  Google Scholar 

  41. R. Shalvoy, G. Fisher, and P. Stiles: X-ray photoemission studies of the valence bands of nine IV–VI compounds. Phys. Rev. B 15, 2021 (1977).

    Article  CAS  Google Scholar 

  42. N. Giang, Q. Xu, Y.S. Hor, A.J. Williams, S.E. Dutton, H.W. Zandbergen, and R.J. Cava: Superconductivity at 2.3 K in the misfit compound(PbSe)1.16(TiSe2)2. Phys. Rev. B 82, 024503 (2010).

    Article  CAS  Google Scholar 

  43. D.B. Moore, M. Beekman, S. Disch, P. Zschack, I. Häusler, W. Neumann, and D.C. Johnson: Synthesis, structure, and properties of turbostratically disordered (PbSe)1.18(TiSe2)2. Chem. Mater. 25, 2404 (2013).

    Article  CAS  Google Scholar 

  44. U.A. Schröder, M. Petrović, T. Gerber, A.J. Martínez-Galera, E. Grånäs, M.A. Arman, C. Herbig, J. Schnadt, M. Kralj, J. Knudsen, and T. Michely: Core level shifts of intercalated graphene. 2D Mater. 4, 015013 (2017).

    Article  CAS  Google Scholar 

  45. M. Esters: Deposition software for the inficon IC6 deposition controller (2018). Available at: https://github.com/marcoesters/deposition_ic6 (accessed December 04, 2018).

Download references

Acknowledgments

This material is based upon the work supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. 1309047. The authors acknowledge the support from the National Science Foundation under grant DMR-1710214. Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Seyller.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Göhler, F., Hamann, D.M., Rösch, N. et al. Electronic structure of designed [(SnSe)1+δ]m[TiSe2]2 heterostructure thin films with tunable layering sequence. Journal of Materials Research 34, 1965–1975 (2019). https://doi.org/10.1557/jmr.2019.128

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2019.128

Navigation