Skip to main content
Log in

Deformation behavior of nanocrystalline and ultrafine-grained CoCrCuFeNi high-entropy alloys

  • Invited Paper
  • Nanocrystalline High Entropy Materials: Processing Challenges and Properties
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Nanocrystalline (NC) and ultrafine-grained (UFG) CoCrCuFeNi high-entropy alloy (HEA) with grain size ranging between 59 and 386 nm was produced via powder metallurgy and heat treatment. The as-sintered HEA exhibited two face-centered cubic (FCC) phases (CoCrFeNi-rich and Cu-rich phases) and a small grain size (59 nm), whereas the alloy after heat treatment at 1000 °C exhibited a CoCuFeNi-rich phase with FCC structure and relatively larger grain size (386 nm). Moreover, the yield strength decreased from 1930 to 883 MPa, and plastic strain to failure increased by 8–32%. In terms of microstructural evolution, grain boundary strengthening coupled with lattice distortion was the dominant strengthening mechanism for NC HEAs. Furthermore, the coefficient for boundary strengthening was higher in the HEAs than in the corresponding pure elemental metals with FCC structure, possibly because of significant lattice distortion. The UFG HEAs exhibited high strength and good ductility because of the activation of dislocation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang: Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299 (2004).

    Article  CAS  Google Scholar 

  2. B. Gwalani, V. Soni, D. Choudhuri, M. Lee, J.Y. Hwang, S.J. Nam, H. Ryu, S.H. Hong, and R. Banerjee: Stability of ordered L12 and B2 precipitates in face centered cubic based high entropy alloys—Al0.3CoFeCrNi and Al0.3CuFeCrNi2. Scr. Mater. 123, 130 (2016).

    Article  CAS  Google Scholar 

  3. M.H. Tsai, H. Yuan, G. Cheng, W. Xu, K.Y. Tsai, C.W. Tsai, W.W. Jian, C.C. Juan, W.J. Shen, M.H. Chuang, J.W. Yeh, and Y.T. Zhu: Morphology, structure and composition of precipitates in Al0.3CoCrCu0.5FeNi high-entropy alloy. Intermetallics 32, 329 (2013).

    Article  CAS  Google Scholar 

  4. X.F. Wang, Y. Zhang, Y. Qiao, and G.L. Chen: Novel microstructure and properties of multicomponent CoCrCuFeNiTix alloys. Intermetallics 15, 357 (2007).

    Article  CAS  Google Scholar 

  5. C-J. Tong, Y-L. Chen, J-W. Yeh, S-J. Lin, S-K. Chen, T-T. Shun, C-H. Tsau, and S-Y. Chang: Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metall. Mater. Trans. A 36, 881 (2005).

    Article  Google Scholar 

  6. A. Kumar, P. Dhekne, A.K. Swarnakar, and M.K. Chopkar: Analysis of Si addition on phase formation in AlCoCrCuFeNiSix high entropy alloys. Mater. Lett. 188, 73 (2017).

    Article  CAS  Google Scholar 

  7. T. Borkar, B. Gwalani, D. Choudhuri, C.V. Mikler, C.J. Yannetta, X. Chen, R.V. Ramanujan, M.J. Styles, M.A. Gibson, and R. Banerjee: A combinatorial assessment of AlxCrCuFeNi2 (0 < x < 1.5) complex concentrated alloys: Microstructure, microhardness, and magnetic properties. Acta Mater. 116, 63 (2016).

    Article  CAS  Google Scholar 

  8. H. Jiang, K. Han, D. Qiao, Y. Lu, Z. Cao, and T. Li: Effects of Ta addition on the microstructures and mechanical properties of CoCrFeNi high entropy alloy. Mater. Chem. Phys. 210, 43 (2018).

    Article  CAS  Google Scholar 

  9. W.H. Liu, T. Yang, and C.T. Liu: Precipitation hardening in CoCrFeNi-based high entropy alloys. Mater. Chem. Phys. 210, 2 (2018).

    Article  CAS  Google Scholar 

  10. C.C. Koch: Nanocrystalline high-entropy alloys. J. Mater. Res. 32, 3435 (2017).

    Article  CAS  Google Scholar 

  11. Y. Zou, J.M. Wheeler, H. Ma, P. Okle, and R. Spolenak: Nanocrystalline high-entropy alloys: A new paradigm in high-temperature strength and stability. Nano Lett. 17, 1569 (2017).

    Article  CAS  Google Scholar 

  12. H. Shahmir, J. He, Z. Lu, M. Kawasaki, and T.G. Langdon: Effect of annealing on mechanical properties of a nanocrystalline CoCrFeNiMn high-entropy alloy processed by high-pressure torsion. Mater. Sci. Eng., A 676, 294 (2016).

    Article  CAS  Google Scholar 

  13. P.F. Yu, H. Cheng, L.J. Zhang, H. Zhang, Q. Jing, M.Z. Ma, P.K. Liaw, G. Li, and R.P. Liu: Effects of high pressure torsion on microstructures and properties of an Al0.1CoCrFeNi high-entropy alloy. Mater. Sci. Eng., A 655, 283 (2016).

    Article  CAS  Google Scholar 

  14. S. Nam, M.J. Kim, J.Y. Hwang, and H. Choi: Strengthening of Al0.15CoCrCuFeNiTix–C (x = 0, 1, 2) high-entropy alloys by grain refinement and using nanoscale carbides via powder metallurgical route. J. Alloys Compd. 762, 29 (2018).

    Article  CAS  Google Scholar 

  15. R.S. Ganji, P. Sai Karthik, K. Bhanu Sankara Rao, and K.V. Rajulapati: Strengthening mechanisms in equiatomic ultrafine grained AlCoCrCuFeNi high-entropy alloy studied by micro- and nanoindentation methods. Acta Mater. 125, 58 (2017).

    Article  CAS  Google Scholar 

  16. D-H. Lee, I-C. Choi, M-Y. Seok, J. He, Z. Lu, J-Y. Suh, M. Kawasaki, T.G. Langdon, and J. Jang: Nanomechanical behavior and structural stability of a nanocrystalline CoCrFeNiMn high-entropy alloy processed by high-pressure torsion. J. Mater. Res. 30, 2804 (2015).

    Article  CAS  Google Scholar 

  17. B. Schuh, F. Mendez-Martin, B. Völker, E.P. George, H. Clemens, R. Pippan, and A. Hohenwarter: Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation. Acta Mater. 96, 258 (2015).

    Article  CAS  Google Scholar 

  18. H. Shahmir, T. Mousavi, J. He, Z. Lu, M. Kawasaki, and T.G. Langdon: Microstructure and properties of a CoCrFeNiMn high-entropy alloy processed by equal-channel angular pressing. Mater. Sci. Eng., A 705, 411 (2017).

    Article  CAS  Google Scholar 

  19. W. Ji, W. Wang, H. Wang, J. Zhang, Y. Wang, F. Zhang, and Z. Fu: Alloying behavior and novel properties of CoCrFeNiMn high-entropy alloy fabricated by mechanical alloying and spark plasma sintering. Intermetallics 56, 24 (2014).

    Article  CAS  Google Scholar 

  20. W. Chen, Z. Fu, S. Fang, H. Xiao, and D. Zhu: Alloying behavior, microstructure and mechanical properties in a FeNiCrCo0.3Al0.7 high entropy alloy. Mater. Des. 51, 854 (2013).

    Article  CAS  Google Scholar 

  21. H.J. Fecht, E. Hellstern, Z. Fu, and W.L. Johnson: Nanocrystalline metals prepared by high-energy ball milling. Metall. Trans. A 21, 2333 (1990).

    Article  Google Scholar 

  22. Z. Fu, W. Chen, H. Wen, D. Zhang, Z. Chen, B. Zheng, Y. Zhou, and E.J. Lavernia: Microstructure and strengthening mechanisms in an FCC structured single-phase nanocrystalline Co25Ni25Fe25Al7.5Cu17.5 high-entropy alloy. Acta Mater. 107, 59 (2016).

    Article  CAS  Google Scholar 

  23. C.C. Koch, D.G. Morris, K. Lu, and A. Inoue: Ductility of nanostructured materials. MRS Bull. 24, 54 (1999).

    Article  CAS  Google Scholar 

  24. H. Van Swygenhoven and J.R. Weertman: Deformation in nanocrystalline metals. Mater. Today 9, 24 (2006).

    Article  Google Scholar 

  25. S.J. Sun, Y.Z. Tian, H.R. Lin, X.G. Dong, Y.H. Wang, Z.J. Zhang, and Z.F. Zhang: Enhanced strength and ductility of bulk CoCrFeMnNi high entropy alloy having fully recrystallized ultrafine-grained structure. Mater. Des. 133, 122 (2017).

    Article  CAS  Google Scholar 

  26. E. Ma and T. Zhu: Towards strength—ductility synergy through the design of heterogeneous nanostructures in metals. Mater. Today 20, 323 (2017).

    Article  CAS  Google Scholar 

  27. X. Wu, F. Yuan, M. Yang, P. Jiang, C. Zhang, L. Chen, Y. Wei, and E. Ma: Nanodomained nickel unite nanocrystal strength with coarse-grain ductility. Sci. Rep. 5, 11728 (2015).

    Article  Google Scholar 

  28. Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, and C.C. Tasan: Metastable high-entropy dual-phase alloys overcome the strength—ductility trade-off. Nature 534, 227 (2016).

    Article  CAS  Google Scholar 

  29. C. Suryanarayana: Mechanical alloying and milling mechanical engineering. Prog. Mater. Sci. 46, 1 (2001).

    Article  CAS  Google Scholar 

  30. X. Yang and Y. Zhang: Prediction of high-entropy stabilized solid-solution in multi-component alloys. Mater. Chem. Phys. 132, 233 (2012).

    Article  CAS  Google Scholar 

  31. S. Guo, C. Ng, J. Lu, and C.T. Liu: Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. J. Appl. Phys. 109, 103505 (2011).

    Article  CAS  Google Scholar 

  32. F.R. Boer: Cohesion in Metals: Transition Metal Alloys (North-Holland, Amsterdam, 1988).

    Google Scholar 

  33. H.F. Sheng, M. Gong, and L.M. Peng: Microstructural characterization and mechanical properties of an Al0.5CoCrFeCuNi high-entropy alloy in as-cast and heat-treated/quenched conditions. Mater. Sci. Eng., A 567, 14 (2013).

    Article  CAS  Google Scholar 

  34. T. Guo, J. Li, J. Wang, Y. Wang, H. Kou, and S. Niu: Liquid-phase separation in undercooled CoCrCuFeNi high entropy alloy. Intermetallics 86, 110 (2017).

    Article  CAS  Google Scholar 

  35. H. Mao, H-L. Chen, and Q. Chen: TCHEA1: A thermodynamic database not limited for “High entropy” alloys. J. Phase Equilib. Diffus. 38, 353 (2017).

    Article  CAS  Google Scholar 

  36. J.Y. He, W.H. Liu, H. Wang, Y. Wu, X.J. Liu, T.G. Nieh, and Z.P. Lu: Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system. Acta Mater. 62, 105 (2014).

    Article  CAS  Google Scholar 

  37. S. Fang, X. Xiao, L. Xia, W. Li, and Y. Dong: Relationship between the widths of supercooled liquid regions and bond parameters of Mg-based bulk metallic glasses. J. Non-Cryst. Solids 321, 120 (2003).

    Article  CAS  Google Scholar 

  38. X.D. Xu, P. Liu, S. Guo, A. Hirata, T. Fujita, T.G. Nieh, C.T. Liu, and M.W. Chen: Nanoscale phase separation in a fcc-based CoCrCuFeNiAl0.5 high-entropy alloy. Acta Mater. 84, 145 (2015).

    Article  CAS  Google Scholar 

  39. R. Sonkusare, P.D. Janani, N.P. Gurao, S. Sarkar, S. Sen, K.G. Pradeep, and K. Biswas: Phase equilibria in equiatomic CoCuFeMnNi high entropy alloy. Mater. Chem. Phys. 210, 269 (2018).

    Article  CAS  Google Scholar 

  40. T.H. Courtney: Mechanical Behavior of Materials (Waveland Press, Long Grove, 2005).

    Google Scholar 

  41. Z. Fu, W. Chen, S. Fang, D. Zhang, H. Xiao, and D. Zhu: Alloying behavior and deformation twinning in a CoNiFeCrAl0.6Ti0.4 high entropy alloy processed by spark plasma sintering. J. Alloys Compd. 553, 316 (2013).

    Article  CAS  Google Scholar 

  42. Z. Fu, W. Chen, H. Xiao, L. Zhou, D. Zhu, and S. Yang: Fabrication and properties of nanocrystalline Co0.5FeNiCrTi0.5 high entropy alloy by MA-SPS technique. Mater. Des. 44, 535 (2013).

    Article  CAS  Google Scholar 

  43. S-H. Joo, H. Kato, M.J. Jang, J. Moon, E.B. Kim, S-J. Hong, and H.S. Kim: Structure and properties of ultrafine-grained CoCrFeMnNi high-entropy alloys produced by mechanical alloying and spark plasma sintering. J. Alloys Compd. 698, 591 (2017).

    Article  CAS  Google Scholar 

  44. S.G. Ma, S.F. Zhang, J.W. Qiao, Z.H. Wang, M.C. Gao, Z.M. Jiao, H.J. Yang, and Y. Zhang: Superior high tensile elongation of a single-crystal CoCrFeNiAl0.3 high-entropy alloy by Bridgman solidification. Intermetallics 54, 104 (2014).

    Article  CAS  Google Scholar 

  45. D. Wu, J. Zhang, J.C. Huang, H. Bei, and T.G. Nieh: Grain-boundary strengthening in nanocrystalline chromium and the Hall—Petch coefficient of body-centered cubic metals. Scr. Mater. 68, 118 (2013).

    Article  CAS  Google Scholar 

  46. A.S. Khan, H. Zhang, and L. Takacs: Mechanical response and modeling of fully compacted nanocrystalline iron and copper. Int. J. Plast. 16, 1459 (2000).

    Article  CAS  Google Scholar 

  47. J. Chen, L. Lu, and K. Lu: Hardness and strain rate sensitivity of nanocrystalline Cu. Scr. Mater. 54, 1913 (2006).

    Article  CAS  Google Scholar 

  48. A. Godon, J. Creus, S. Cohendoz, E. Conforto, X. Feaugas, P. Girault, and C. Savall: Effects of grain orientation on the Hall—Petch relationship in electrodeposited nickel with nanocrystalline grains. Scr. Mater. 62, 403 (2010).

    Article  CAS  Google Scholar 

  49. R. Armstrong, I. Codd, R.M. Douthwaite, and N.J. Petch: The plastic deformation of polycrystalline aggregates. Philos. Mag. 7, 45 (1962).

    Article  CAS  Google Scholar 

  50. A.C. Arko and Y.H. Liu: The effect of atomic order on the Hall—Petch behavior in Ni3Fe. Metall. Trans. 2, 1875 (1971).

    CAS  Google Scholar 

  51. D.B. Williams and C.B. Carter: The Transmission Electron Microscope. Transmission Electron Microscopy (Springer, New York, 1996).

    Book  Google Scholar 

  52. G. Laplanche, A. Kostka, O.M. Horst, G. Eggeler, and E.P. George: Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy. Acta Mater. 118, 152 (2016).

    Article  CAS  Google Scholar 

  53. J. Liu, C. Chen, Y. Xu, S. Wu, G. Wang, H. Wang, Y. Fang, and L. Meng: Deformation twinning behaviors of the low stacking fault energy high-entropy alloy: An in situ TEM study. Scr. Mater. 137, 9 (2017).

    Article  CAS  Google Scholar 

  54. F. Otto, A. Dlouhý, C. Somsen, H. Bei, G. Eggeler, and E.P. George: The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Mater. 61, 5743 (2013).

    Article  CAS  Google Scholar 

  55. S.W. Wu, G. Wang, J. Yi, Y.D. Jia, I. Hussain, Q.J. Zhai, and P.K. Liaw: Strong grain-size effect on deformation twinning of an Al0.1CoCrFeNi high-entropy alloy. Mater. Res. Lett. 5, 276 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported by the National Research Foundation (NRF) of Korea and funded by Ministry of Science, ICT (MSIT; 2013K1A4A3055679, 2015R1D1A1A01060718, 2015R1A5A7037615, 2016M2B2A9A02943809, and 2017M1A3A3A02015639).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jae-Hun Kim or Hyunjoo Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nam, S., Hwang, J.Y., Jeon, J. et al. Deformation behavior of nanocrystalline and ultrafine-grained CoCrCuFeNi high-entropy alloys. Journal of Materials Research 34, 720–731 (2019). https://doi.org/10.1557/jmr.2018.477

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.477

Navigation