Skip to main content
Log in

Material design and processing of a new class of titanium boride cermets with tough metallic phases and mechanical properties

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The design and the processing of a new class of titanium boride (TiB)-based bulk cermets containing a metallic phase (β-Ti phase) for toughening is presented. The general approach is rapid reaction and densification, using starting powders of Ti, TiB2, Fe, and Mo, by electric-field-activated sintering. The cermets consist of two-phase microstructures in which the boride phase formed as a networked structure of TiB whiskers that were created in situ upon the reaction between the powders. Hardness, flexural strength, and fracture toughness measurements of these materials revealed that they possess an interesting set of properties up to: hardness values of 1090 kg/mm2, flexural strength values of 953 MPa, and fracture toughness values of 18 MPa m1/2. A remarkable finding is that although the metallic phase fractured by microscopic cleavage, the cermets showed good fracture toughness values. The present study not only illustrates the process details and microstructure leading to these properties but also provides a broad powder metallurgical approach to design and synthesize cermets that may yield further improved properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. H.E. Exner: Physical and chemical nature of cemented carbides. Int. Met. Rev. 24, 149 (1979).

    Article  CAS  Google Scholar 

  2. P. Ettmayer: Hardmetals and cermets. Annu. Rev. Mater. Sci. 19, 145 (1989).

    Article  CAS  Google Scholar 

  3. D. Moskowitz and J. Humenik: TiC-based cermets for cutting applications. Mod. Dev. Powder Metall. 14, 307 (1985).

    Google Scholar 

  4. I.W.M. Brown and W.R. Owers: Fabrication, microstructure and properties of Fe–TiC ceramic–metal composites. Curr. Appl. Phys. 4, 171 (2004).

    Article  Google Scholar 

  5. R. Subramanian and J.H. Schneibel: FeAl–TiC and FeAl–WC composites—Melt infiltration processing, microstructure and mechanical properties. Mater. Sci. Eng., A 244, 103 (1998).

    Article  Google Scholar 

  6. S.Y. Zhang: Titanium carbonitride-based cermets: Processes and properties. Mater. Sci. Eng., A 163, 141 (1993).

    Article  Google Scholar 

  7. J. Gurland: New scientific approaches to development of tool materials. Int. Met. Rev. 33, 151 (1988).

    Article  CAS  Google Scholar 

  8. S.L. Sigl and H.F. Fischmeister: On the fracture toughness of cemented carbides. Acta Metall. 36, 887 (1988).

    Article  CAS  Google Scholar 

  9. K.S. Ravichandran: Fracture toughness of two-phase WC-Co cermets. Acta Metall. Mater. 42, 143 (1994).

    Article  CAS  Google Scholar 

  10. M. Humenik, Jr. and N.M. Parikh: Cermets: I, fundamental concepts related to micro-structure and physical properties of cermet systems. J. Am. Ceram. Soc. 39, 60 (1956).

    Article  CAS  Google Scholar 

  11. N.M. Parikh and M. Humenik, Jr.: Cermets: II, wettability and microstructure studies in liquid-phase sintering. J. Am. Ceram. Soc. 40, 315 (1957).

    Article  CAS  Google Scholar 

  12. S. Madtha, C. Lee, and K.S. Ravi Chandran: Physical and mechanical properties of nanostructured titanium boride (TiB) ceramic. J. Am. Ceram. Soc. 91, 1319–1321 (2008).

    Article  CAS  Google Scholar 

  13. R.R. Atri, K.S. Ravichandran, and S.K. Jha: Elastic properties of in situ processed Ti–TiB composites measured by impulse excitation of vibration. Mater. Sci. Eng., A 271, 150 (1999).

    Article  Google Scholar 

  14. K.B. Panda and K.S. Ravi Chandran: First principles determination of elastic constants and chemical bonding of titanium boride (TiB) on the basis of density functional theory. Acta Mater. 54, 1641 (2006).

    Article  CAS  Google Scholar 

  15. S. Nakane, Y. Takano, M. Yoshinaka, K. Hirota, and O. Yamaguchi: Fabrication and mechanical properties of titanium boride ceramics. J. Am. Ceram. Soc. 82, 1627 (1999).

    Article  CAS  Google Scholar 

  16. S.S. Sahay, K.S. Ravichandran, and R. Atri: Evolution of microstructure and phases in in situ processed Ti–TiB composites containing high volume fractions of TiB whiskers. J. Mater. Res. 14, 4214 (1999).

    Article  CAS  Google Scholar 

  17. S. Madtha and K.S. Ravi Chandran: Reactive-sinter-processing and attractive mechanical properties of bulk and nanostructured titanium boride. J. Am. Ceram. Soc. 95, 117 (2012).

    Article  CAS  Google Scholar 

  18. Titanium–Boron System: ASM Handbook: Alloy Phase Diagrams, Vol. 3 (ASM International, Materials Park, Ohio, 1992); p. 440.

  19. H. Conrad: Effect of interstitial solutes on the strength and ductility of titanium. Prog. Mater. Sci. 26, 123 (1981).

    Article  CAS  Google Scholar 

  20. J. Du and K.S. Ravi Chandran: Formation of bulk titanium boride (TiB) nano‐ceramic with Fe–Mo addition by electric-field-activated-sintering. J. Am. Ceram. Soc. 100, 5450 (2017).

    Article  CAS  Google Scholar 

  21. V. Jindal and K.S. Ravi Chandran: Thermodynamic Assessment of Ti–B–Fe–Mo Quaternary System (Department of Metallurgical Engineering, University of Utah, Salt Lake City, 2018). (unpublished research).

  22. ASTM International: ASTM C1161-13 Standard test method for flexural strength of advanced ceramics at ambient temperature. ASTM Stand. B. C. 1 (2013); pp. 1–19.

  23. ASTM International: ASTM C1421-10 Standard test methods for determination of fracture toughness of advanced ceramics at ambient temperature. ASTM Stand. B.I. 1 (2011).

  24. K. Panda and K.S. Ravi Chandran: Synthesis of ductile Ti–TiB composites with β-Ti alloy matrix. Metall. Mater. Trans. A 34, 1371 (2003).

    Article  Google Scholar 

  25. J.D. Cotton, R.D. Briggs, R.R. Boyer, S. Tamirisakandala, P. Russo, N. Shchetnikov, and J.C. Fanning: State of the art in beta titanium alloys for airframe applications. JOM 67, 1281 (2015).

    Article  CAS  Google Scholar 

  26. J. Du and K.S. Ravi Chandran: CALPHAD-guided alloy design and processing for high strength and high toughness in titanium boride (TiB) nanoceramic system. Acta Mater. (2018). (submitted to).

    Google Scholar 

  27. J. Du and K.S. Ravi Chandran: Department of Metallurgical Engineering, University of Utah, Salt Lake City, Utah (unpublished research).

  28. K.S. Ravichandran: A survey of toughness in ductile phase composites. Scr. Metall. Mater. 26, 1389 (1992).

    Article  CAS  Google Scholar 

  29. M.A. Przystupa and T.H. Courtney: Fracture in equiaxed two phase alloys: Part II. Fracture in alloys with isolated plastic particles. Metall. Trans. A 13, 881 (1982).

    Article  CAS  Google Scholar 

  30. B.D. Flinn, M. Rühle, and A.G. Evans: Toughening in composites of Al2O3 reinforced with Al. Acta Metall. 37, 3001 (1989).

    Article  CAS  Google Scholar 

  31. J.L. Chermant and F. Osterstock: Fracture toughness and fracture of WC-Co composites. J. Mater. Sci. 11, 1939 (1976).

    Article  CAS  Google Scholar 

  32. J.R. Pickens and J. Gurland: The fracture toughness of WCCo alloys measured on single-edge notched beam specimens precracked by electron discharge machining. Mater. Sci. Eng. 33, 135 (1978).

    Article  CAS  Google Scholar 

  33. J.H. Schneibel, C.A. Carmichael, E.D. Specht, and R. Subramanian: Liquid-phase sintered iron aluminide-ceramic composites. Intermetallics 5, 61 (1997).

    Article  CAS  Google Scholar 

  34. R. Subramanian, J.H. Schneibel, K.B. Alexander, and K.P. Plucknett: Iron aluminide-titanium carbide composites by pressureless melt infiltration—Microstructure and mechanical properties. Scr. Mater. 35, 583 (1996).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The research, largely performed M.S. thesis research of the first author, was supported by the National Science Foundation, the program on Designing Materials to Revolutionize our Engineering Future (DMREF), through the grant CMMI-1435758. The assistance provided by Dr. Tony Sanders, Dr. Mark Koopman, Somnaang Rou, Ahmed Degnah, and Richard Laroche is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K.S. Ravi Chandran.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lark, A., Du, J. & Chandran, K.R. Material design and processing of a new class of titanium boride cermets with tough metallic phases and mechanical properties. Journal of Materials Research 33, 4296–4306 (2018). https://doi.org/10.1557/jmr.2018.368

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.368

Navigation