Skip to main content
Log in

Microstructure and electrochemical properties of nanoporous gold produced by dealloying Au-based thin film nanoglass

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this study, Au-based nanoglasses in the form of thin films deposited by magnetron sputtering are comparatively dealloyed. The films have either nanograined or nanocolumnar microstructure, depending on the working pressure of Ar in the sputtering chamber. Nanocolumnar thin films exhibit much higher dealloying rate reducing effectively the dealloying time with respect to nanograined and homogenous thin films. Electrocatalysis experiments indicate that the resulting nanoporous films are active for the methanol electrooxidation, with promising results in term of stability especially for the dealloyed nanocolumnar film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

Similar content being viewed by others

References

  1. Y. Ding, Y.J. Kim, and J. Erlebacher: Nanoporous gold leaf: “Ancient technology ”/advanced material. Adv. Mater. 16, 1897 (2004).

    Article  CAS  Google Scholar 

  2. R. Morrish, K. Dorame, and A.J. Muscat: Formation of nanoporous Au by dealloying AuCu thin films in HNO3. Scr. Mater. 64, 856 (2011).

    Article  CAS  Google Scholar 

  3. J. Erlebacher, M.J. Aziz, A. Karma, N. Dimitrov, and K. Sieradzki: Evolution of nanoporosity in dealloying. Nature 410, 450 (2001).

    Article  CAS  Google Scholar 

  4. I. McCue, E. Benn, B. Gaskey, and J. Erlebacher: Dealloying and dealloyed materials. Annu. Rev. Mater. Res. 46, 263 (2016).

    Article  CAS  Google Scholar 

  5. F. Scaglione, F. Celegato, P. Rizzi, and L. Battezzati: A comparison of de-alloying crystalline and amorphous multicomponent Au alloys. Intermetallics 66, 82 (2015).

    Article  CAS  Google Scholar 

  6. E.M. Paschalidou, F. Celegato, F. Scaglione, P. Rizzi, L. Battezzati, A. Gebert, S. Oswald, U. Wolff, L. Mihaylov, and T. Spassov: The mechanism of generating nanoporous Au by de-alloying amorphous alloys. Acta Mater. 119, 177 (2016).

    Article  CAS  Google Scholar 

  7. Y. Xue, F. Scaglione, P. Rizzi, and L. Battezzati: Improving the chemical de-alloying of amorphous Au alloys. Corros. Sci. 127, 141 (2017).

    Article  CAS  Google Scholar 

  8. H-J. Qiu, J.Q. Wang, P. Liu, Y. Wang, and M.W. Chen: Hierarchical nanoporous metal/metal-oxide composite by dealloying metallic glass for high-performance energy storage. Corros. Sci. 96, 196 (2015).

    Article  CAS  Google Scholar 

  9. J. Erlebacher: Mechanism of coarsening and bubble formation in high-genus nanoporous metals. Phys. Rev. Lett. 106, 1 (2011).

    Article  CAS  Google Scholar 

  10. G. Gupta, J.C. Thorp, N.A. Mara, A.M. Dattelbaum, A. Misra, and S.T. Picraux: Morphology and porosity of nanoporous Au thin films formed by dealloying of AuxSi1−x. J. Appl. Phys. 112, 1 (2012).

    Google Scholar 

  11. M.C. Dixon, T.A. Daniel, M. Hieda, D.M. Smilgies, M.H.W. Chan, and D.L. Allara: Preparation, structure, and optical properties of nanoporous gold thin films. Langmuir 23, 2414 (2007).

    Article  CAS  Google Scholar 

  12. X. Li, H-J. Qiu, J.Q. Wang, and Y. Wang: Corrosion of ternary Mn–Cu–Au to nanoporous Au–Cu with widely tuned Au/Cu ratio for electrocatalyst. Corros. Sci. 106, 55 (2016).

    Article  CAS  Google Scholar 

  13. S. Ding, Y. Liu, Y. Li, Z. Liu, S. Sohn, F.J. Walker, and J. Schroers: Combinatorial development of bulk metallic glasses. Nat. Mater. 13, 1 (2014).

    Article  CAS  Google Scholar 

  14. H. Gleiter: The way from today’s materials to new kinds of amorphous solids: Nano-glasses. Proc. Indian Natl. Sci. Acad. 80, 55 (2014).

    Article  CAS  Google Scholar 

  15. H. Gleiter: Nanoglasses: A new kind of noncrystalline material and the way to an age of new technologies?Small 12, 2225 (2016).

    Article  CAS  Google Scholar 

  16. J.X. Fang, U. Vainio, W. Puff, R. Würschum, X.L. Wang, D. Wang, M. Ghafari, F. Jiang, J. Sun, H. Hahn, and H. Gleiter: Atomic structure and structural stability of Sc75Fe25 nanoglasses. Nano Lett. 12, 458 (2012).

    Article  CAS  Google Scholar 

  17. J.Q. Wang, N. Chen, P. Liu, Z. Wang, D.V. Louzguine-Luzgin, M.W. Chen, and J.H. Perepezko: The ultrastable kinetic behavior of an Au-based nanoglass. Acta Mater. 79, 30 (2014).

    Article  CAS  Google Scholar 

  18. R. Witte, T. Feng, J.X. Fang, A. Fischer, M. Ghafari, R. Kruk, R.A. Brand, D. Wang, H. Hahn, and H. Gleiter: Evidence for enhanced ferromagnetism in an iron-based nanoglass. Appl. Phys. Lett. 103, 73106 (2013).

    Article  CAS  Google Scholar 

  19. X.L. Wang, F. Jiang, H. Hahn, J. Li, H. Gleiter, J. Sun, and J.X. Fang: Plasticity of a scandium-based nanoglass. Scr. Mater. 98, 40 (2015).

    Article  CAS  Google Scholar 

  20. N. Chen, R. Frank, N. Asao, D.V. Louzguine-Luzgin, P. Sharma, J.Q. Wang, G.Q. Xie, Y. Ishikawa, N. Hatakeyama, Y.C. Lin, M. Esashi, Y. Yamamoto, and A. Inoue: Formation and properties of Au-based nanograined metallic glasses. Acta Mater. 59, 6433 (2011).

    Article  CAS  Google Scholar 

  21. H. Guo, W. Zhang, C. Qin, J. Qiang, M. Chen, and A. Inoue: Glass-forming ability and properties of new Au-based glassy alloys with low Au concentrations. Mater. Trans. 50, 1290 (2009).

    Article  CAS  Google Scholar 

  22. S. Xiao, F. Xiao, Y. Hu, S. Yuan, S. Wang, L. Qian, and Y. Liu: Hierarchical nanoporous gold–platinum with heterogeneous interfaces for methanol electrooxidation. Sci. Rep. 4, 4370 (2015).

    Article  CAS  Google Scholar 

  23. J-Y. Suh, R. Dale Conner, C. Paul Kim, M.D. Demetriou, and W.L. Johnson: Correlation between fracture surface morphology and toughness in Zr-based bulk metallic glasses. J. Mater. Res. 25, 982 (2010).

    Article  CAS  Google Scholar 

  24. Z. Sniadecki, D. Wang, Y. Ivanisenko, V.S.K. Chakravadhanula, C. Kübel, H. Hahn, and H. Gleiter: Nanoscale morphology of Ni50Ti45Cu5 nanoglass. Mater. Charact. 113, 26 (2016).

    Article  CAS  Google Scholar 

  25. J.A. Thornton: High rate thick film growth. Annu. Rev. Mater. Sci. 7, 239 (1977).

    Article  CAS  Google Scholar 

  26. J.A. Thornton: Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings. J. Vac. Sci. Technol. 11, 666 (1974).

    Article  CAS  Google Scholar 

  27. K-Y. Chan and B-S. Teo: Atomic force microscopy (AFM) and X-ray diffraction (XRD) investigations of copper thin films prepared by dc magnetron sputtering technique. Microelectron. J. 37, 1064 (2006).

    Article  CAS  Google Scholar 

  28. S. Kaciulis, A. Mezzi, G. Fiore, I. Ichim, L. Battezzati, and P. Rizzi: XPS study of gold-based metallic glass. Surf. Interface Anal. 42, 597 (2010).

    Article  CAS  Google Scholar 

  29. M. Eisenbart, U.E. Klotz, R. Busch, and I. Gallino: A colourimetric and microstructural study of the tarnishing of gold-based bulk metallic glasses. Corros. Sci. 85, 258 (2014).

    Article  CAS  Google Scholar 

  30. X. Lang, H. Guo, L. Chen, and A. Kudo: Novel nanoporous Au–Pd alloy with high catalytic activity and excellent electrochemical stability. J. Phys. Chem. C 114, 2600 (2010).

    Article  CAS  Google Scholar 

  31. F. Scaglione, P. Rizzi, F. Celegato, and L. Battezzati: Synthesis of nanoporous gold by free corrosion of an amorphous precursor. J. Alloys Compd. 615, S142 (2014).

    Article  CAS  Google Scholar 

  32. A. Gebert, K. Buchholz, A. Leonhard, K. Mummert, J. Eckert, and L. Schultz: Investigations on the electrochemical behaviour of Zr-based bulk metallic glasses. Mater. Sci. Eng., A 267, 294 (1999).

    Article  Google Scholar 

  33. L. Mihaylov, L. Lyubenova, T. Gerdjikov, D. Nihtianova, and T. Spassov: Selective dissolution of amorphous Zr–Cu–Ni–Al alloys. Corros. Sci. 94, 350 (2015).

    Article  CAS  Google Scholar 

  34. L. Mihailov, M. Redzheb, and T. Spassov: Selective dissolution of amorphous and nanocrystalline Zr2Ni. Corros. Sci. 74, 308 (2013).

    Article  CAS  Google Scholar 

  35. E.M. Paschalidou, F. Scaglione, A. Gebert, S. Oswald, P. Rizzi, and L. Battezzati: Partially and fully de-alloyed glassy ribbons based on Au: Application in methanol electro-oxidation studies. J. Alloys Compd. 667, 302 (2016).

    Article  CAS  Google Scholar 

  36. T. Fujita, P. Guan, K. McKenna, X. Lang, A. Hirata, L. Zhang, T. Tokunaga, S. Arai, Y. Yamamoto, N. Tanaka, Y. Ishikawa, N. Asao, Y. Yamamoto, J. Erlebacher, and M. Chen: Atomic origins of the high catalytic activity of nanoporous gold. Nat. Mater. 11, 775 (2012).

    Article  CAS  Google Scholar 

  37. J. Zhang, P. Liu, H. Ma, and Y. Ding: Nanostructured porous gold for methanol electro-oxidation. J. Phys. Chem. C 111, 10382 (2007).

    Article  CAS  Google Scholar 

  38. Z. Borkowska, A. Tymosiak-Zielinska, and G. Shul: Electrooxidation of methanol on polycrystalline and single crystal gold electrodes. Electrochim. Acta 49, 1209 (2004).

    Article  CAS  Google Scholar 

  39. H. Heli, M. Jafarian, M.G. Mahjani, and F. Gobal: Electro-oxidation of methanol on copper in alkaline solution. Electrochim. Acta 49, 4999 (2004).

    Article  CAS  Google Scholar 

  40. A. Khouchaf, D. Takky, and M. El Mahi Chbihi: Electrocatalytic oxidation of methanol on glassy carbon electrode modified by metal ions (copper and nickel) dispersed into polyaniline film. J. Mater. Sci. Chem. Eng. 4, 97 (2016).

    CAS  Google Scholar 

  41. S.S. Abd El Rehim, H.H. Hassan, M.A.M. Ibrahim, and M.A. Amin: Electrochemical behaviour of a silver electrode in NaOH solutions. Monatsh. Chem. 129, 1103 (1998).

    CAS  Google Scholar 

  42. Y. Wan, X. Wang, S. Liu, Y. Li, H. Sun, and Q. Wang: Effect of electrochemical factors on formation and reduction of silver oxides. Int. J. Electrochem. Sci. 8, 12837 (2013).

    CAS  Google Scholar 

  43. M-C. Jeong: Voltammetric studies on the palladium oxides in alkaline media. J. Electrochem. Soc. 140, 1986 (1993).

    Article  CAS  Google Scholar 

  44. M. Grden, M. Lukaszewski, G. Jerkiewicz, and A. Czerwinski: Electrochemical behaviour of palladium electrode: Oxidation, electrodissolution and ionic adsorption. Electrochim. Acta 53, 7583 (2008).

    Article  CAS  Google Scholar 

  45. K.A. Assiongbon and D. Roy: Electro-oxidation of methanol on gold in alkaline media: Adsorption characteristics of reaction intermediates studied using time resolved electro-chemical impedance and surface plasmon resonance techniques. Surf. Sci. 594, 99 (2005).

    Article  CAS  Google Scholar 

  46. M. Graf, M. Haensch, J. Carstens, G. Wittstock, and J. Weissmüller: Electrocatalytic methanol oxidation with nanoporous gold: Microstructure and selectivity. Nanoscale 9, 17839 (2017).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the funding scheme of the European Commission, Marie Curie Actions-Initial Training Networks (ITN) in the frame of the project VitriMetTech-Vitrified Metals Technologies and Applications in Devices and Chemistry, 607080 FP7-PEOPLE-2013-ITN. We would like to thank PX Services, La Chaux-de-Fonds (CH), for providing the material and the equipment necessary for the casting of the Au-based target.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pierre Denis or Yanpeng Xue.

Supplementary Material

43578_2018_33182661_MOESM1_ESM.docx

Supporting information: Microstructure and electrochemical properties of nanoporous Gold produced by dealloying Au-based thin film nano-glass (approximately 1.84 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Denis, P., Fecht, HJ., Xue, Y. et al. Microstructure and electrochemical properties of nanoporous gold produced by dealloying Au-based thin film nanoglass. Journal of Materials Research 33, 2661–2670 (2018). https://doi.org/10.1557/jmr.2018.176

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.176

Navigation