Skip to main content
Log in

Equal channel angular extrusion for bulk processing of Fe–Co–2V soft magnetic alloys, part I: Processing and mechanical properties

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The soft magnetic alloy Fe–Co–2V, also known as Permendur-2V or Hiperco® 50A, was subjected to equal channel angular extrusion (ECAE) at 750–850 °C using two processing routes. Hiperco is a trade name of Carpenter Technology Corporation. ECAE, which is a severe plastic deformation process, refined the grain size to about 1.5–3 µm, compared to 25–70 µm for the conventional Hiperco® bar. The fine-grain microstructure is homogenous throughout the ECAE material, from center to edge, due to the simple-shear ECAE process. Fine-grained Hiperco® has previously only been obtainable in the sheet form. ECAE resulted in yield and tensile strengths of 650–700 MPa and 900–1400 MPa, respectively, representing a 2–3-fold strength increase compared to the conventional bar. The yield strength was demonstrated to fit well to the Hall–Petch relationship established using previous reports on the strength of conventional bar and sheet materials. High ductility, up to 18%, was obtained in the ECAE processed billets and attributed primarily to the partially disordered bcc crystal structure upon quenching from ECAE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

FIG. 1
FIG. 2
FIG. 3
FIG. 4

Similar content being viewed by others

References

  1. T. Sourmail: Near equiatomic FeCo alloys: Constitution, mechanical, and magnetic properties. Prog. Mater. Sci. 50, 816 (2005).

    Article  CAS  Google Scholar 

  2. Carpenter Technology Technical Data Sheet Hiperco 50A Alloy (2008). Available at: cartech.ides.com/datasheet.

  3. M.R. Pinnel and J.E. Bennett: Correlation of magnetic and mechanical properties with microstructure in Fe/Co/2–3% V alloys. Met. Trans. 5, 1273 (1974).

    Article  CAS  Google Scholar 

  4. K. Kawahara: Effect of cold rolling on the mechanical properties of an FeCo–2V alloy. J. Mater. Sci. 18, 3437 (1983).

    Article  CAS  Google Scholar 

  5. K. Kawahara: Structures and mechanical properties of an FeCo–2V alloy. J. Mater. Sci. 18, 3427 (1983).

    Article  CAS  Google Scholar 

  6. K. Kawahara: Effect of carbon on mechanical properties in Fe0.5Co0.5 alloys. J. Mater. Sci. 18, 2047 (1983).

    Article  CAS  Google Scholar 

  7. K. Kawahara: Effect of additive elements on cold workability in FeCo alloys. J. Mater. Sci. 18, 1709 (1983).

    Article  CAS  Google Scholar 

  8. L. Zhao and I. Baker: Extrusion processing of FeCo. J. Mater. Sci. 29, 742 (1994).

    Article  Google Scholar 

  9. L. Weißner, T. Gröb, E. Bruder, P. Groche, and C. Müller: Severe plastic deformation and incremental forming for magnetic hardening. Appl. Mech. Mater. 794, 152 (2015).

    Article  Google Scholar 

  10. C.H. Shang, R.C. Cammarata, T.P. Weihs, and C.L. Chien: Microstructure and Hall–Petch behavior of Fe–Co based Hiperco alloys. Jpn. Mater. Res. 15, 835 (2000).

    Article  CAS  Google Scholar 

  11. B. Nabi, A-L. Helbert, F. Brisset, R. Batonnet, G. Andre, T. Waeckerle, and T. Baudin: Effect of long range order on mechanical properties of partially recrystallized Fe49Co–2V alloy. Mat. Sci. Eng., A 592, 70 (2014).

    Article  CAS  Google Scholar 

  12. B. Nabi, A-L. Helbert, F. Brisset, G. Andre, T. Waeckerle, and T. Baudin: Effect of recrystallization and degree of order on the magnetic and mechanical properties of soft magnetic FeCo–2V alloy. Mat. Sci. Eng., A 578, 215 (2013).

    Article  CAS  Google Scholar 

  13. L. Ren, S. Basu, R.H. Yu, J.Q. Xiao, and A. Parvizi-Majidi: Mechanical properties of Fe–Co soft magnets. J. Mater. Sci. 36, 1451 (2001).

    Article  CAS  Google Scholar 

  14. R.H. Yu, S. Basu, Y. Zhang, A. Parvizi-Majidi, and J.Q. Xiao: Pinning effecct of the grain boundaries on magnetic domain wall in FeCo-based magnetic alloys. J. Appl. Phys. 85, 6655 (1999).

    Article  CAS  Google Scholar 

  15. K.R. Jordan and N.S. Stoloff: Plastic deformation and fracture in FeCo–2% V. Trans. Metall. Soc. AIME 245, 2027 (1969).

    CAS  Google Scholar 

  16. D.F. Susan, J.M. Rodelas, C.V. Robino, and W.H. Greenwood: Hall–Petch Behavior of Fe–Co–V Soft Magnetic Alloy Barstock (Materials Science and Technology, Pittsburgh, PA, 2014).

    Google Scholar 

  17. L. Zhao and I. Baker: The effect of grain size and Fe:Co ratio on the room temperature yielding of FeCo. Acta Metall. Mater. 42, 1953 (1994).

    Article  CAS  Google Scholar 

  18. E.P. George, A.N. Gubbi, I. Baker, and L. Robertson: Mechanical properties of soft magnetic FeCo alloys. Mat. Sci. Eng., A 329–331, 325 (2002).

    Article  Google Scholar 

  19. A. Duckham, D.Z. Zhang, D. Liang, V. Luzin, R.C. Cammarata, R.L. Leheny, C.L. Chien, and T.P. Weihs: Temperature dependent mechanical properties of ultra-fine grained FeCo–2V. Acta Mater. 51, 4083 (2003).

    Article  CAS  Google Scholar 

  20. R.T. Fingers, R.P. Carr, and Z. Turgut: Effect of aging on magnetic properties of Hiperco® 27, Hiperco® 50, and Hiperco® 50HS alloys. J. Appl. Phys. 91, 7848 (2002).

    Article  CAS  Google Scholar 

  21. N.S. Stoloff and I.L. Dillamore: Ordered Alloys: Structural Applications and Physical Metallurgy, B.H. Kear, C.T. Sims, N.S. Stoloff, and J.H. Westbrook, eds. (Claitors, Baton Rouge, FL, 1970); p. 525.

  22. N.S. Stoloff and R.G. Davies: The plastic deformation of ordered FeCo and Fe3Al alloys. Acta Mater. 12, 473 (1964).

    Article  CAS  Google Scholar 

  23. N.S. Stoloff and R.G. Davies: The mechanical properties of ordered alloys. Prog. Mater. Sci. 13, 3–84 (1966).

    Google Scholar 

  24. C.D. Pitt and R.D. Rawlings: Luders strain and ductility of ordered Fe–Co–2V and Fe–Co–V–Ni alloys. Met. Sci. 17, 261 (1983).

    Article  Google Scholar 

  25. D.R. Thornburg: High-strength high-ductility cobalt-iron alloys. J. Appl. Phys. 40, 1579 (1969).

    Article  CAS  Google Scholar 

  26. R.S. Sundar and S.C. Deevi: Influence of alloying elements on the mechanical properties of FeCo–V alloys. Intermetallics 12, 921 (2004).

    Article  CAS  Google Scholar 

  27. C.M. Orrock: The microstructure and properties of equiatomic iron-cobalt magnetic alloys with alloying addition. Ph.D. thesis, London University, 1986.

  28. E. Hug, O. Hubert, and I. Guillot: Effect of strengthening on the magnetic behavior of ordered intermetallic 2% V–CoFe alloys. J. Magn. Magn. Mater. 215–216, 197 (2000).

    Article  Google Scholar 

  29. N. Volbers and J. Gerster: High saturation, high strength iron–cobalt alloy for electrical machines. In Proceedings of the INDUCTICA (CWIEME, Berlin, 2012); pp. 1–4.

    Google Scholar 

  30. V.M. Segal, R.E. Goforth, and K.T. Hartwig: Apparatus and method for deformation processing of metals, ceramics, plastics, and other materials. U.S. Patent No. 5,400,633, Texas A&M University, 1995.

  31. T. Nishizawa and K. Ishida: Binary Alloy Phase Diagrams, 2nd ed., Vol. 2 (ASM International, Materials Park, OH, 1990).

    Google Scholar 

  32. T. Niendorf, D. Canadinc, H.J. Maier, I. Karaman, and G.G. Yapici: Microstructure-mechanical property relationships in ultrafine-grained NbZr. Acta Mater. 55, 6596 (2007).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors wish to thank P. Duran for Gleeble experimentation and M. Reece, A.C. Kilgo, and B.B. McKenzie for materials characterization. Dr. B. Clark, Dr. J.R. Michael, and Dr. R. Kellogg provided helpful discussion during this work and Dr. A. Kustas provided careful review of the manuscript. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525. The FE-SEM acquisition was supported in part by the National Science Foundation under Grant No. DBI-0116835.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Don F. Susan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Susan, D.F., Jozaghi, T., Karaman, I. et al. Equal channel angular extrusion for bulk processing of Fe–Co–2V soft magnetic alloys, part I: Processing and mechanical properties. Journal of Materials Research 33, 2168–2175 (2018). https://doi.org/10.1557/jmr.2018.142

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.142

Navigation