Skip to main content
Log in

Pushing the detection limit of thin film magnetoelectric heterostructures

  • Invited Feature Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Composite magnetoelectrics implemented as thin film heterostructures are discussed in view of their applicability as highly sensitive magnetic field sensors. Here, either PZT or AlN served as piezoelectric component. The magnetostrictive phase consisted of layer systems based on FeCo or (Fe90Co10)78Si12B10. All functional layers were deposited with thicknesses of a few micrometers on Si cantilever structures with typical lateral dimensions of 25 mm by 2.2 mm. Magnetoelectric coefficients as large as 6900 V/cm Oe and a limit of detection as low as 1 pT/(Hz)1/2 were measured. Currently, the best result demonstrates a detection limit of 500 fT/(Hz)1/2 at 958 Hz frequency using a set of two sensors for external noise suppression. A frequency conversion technique is proposed to broaden the applicability of resonant magnetoelectric sensors to a wider frequency range. Finally, the achieved sensor performance is evaluated with regard to typical magnetic field amplitudes in medical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6

Similar content being viewed by others

References

  1. C-W. Nan, M.I. Bichurin, S. Dong, D. Viehland, and G.J. Srinivasan: Multiferroic magnetoelectric composites: Historical perspective, status, and future directions. Appl. Phys. 103, 031101 (2008).

    Article  CAS  Google Scholar 

  2. T. Nan, Y. Hui, M. Rinaldi, and N. Sun: Self-biased 215 MHz magnetoelectric NEMS resonator for ultra-sensitive DC magnetic field detection. Sci. Rep. 3, 1985 (2013).

    Article  Google Scholar 

  3. P. Zhao, Z. Zhao, D. Hunter, R. Suchoski, C. Gao, S. Mathews, M. Wuttig, and I. Takeuchi: Fabrication and characterization of all-thin-film magnetoelectric sensors. Appl. Phys. Lett. 94, 243507 (2009).

    Article  CAS  Google Scholar 

  4. D.G. Lee, S.M. Kim, Y.K. Yoo, J.H. Han, D.W. Chun, Y-C. Kim, J. Kim, K.S. Hwang, T.S. Kim, W.W. Jo, H. Kim, S-H. Song, and J.H. Lee: Ultra-sensitive magnetoelectric microcantilever at a low frequency. Appl. Phys. Lett. 101, 182902 (2012).

    Article  CAS  Google Scholar 

  5. E. Lage, C. Kirchhof, V. Hrkac, L. Kienle, R. Jahns, R. Knöchel, E. Quandt, and D. Meyners: Exchange biasing of magnetoelectric composites. Nat. Mater. 11, 523–529 (2012).

    Article  CAS  Google Scholar 

  6. A. Piorra: Ferroelektrische Schichten für magnetoelektrische Komposite (Ferroelectric Films for Magnetoelectric Composites). PhD Thesis, Christian-Albrechts-Universität zu Kiel, Germany, January 2014.

    Google Scholar 

  7. J. Ryu, S. Priya, A.V. Carazo, K. Uchino, and H-E. Kim: Effect of the magnetostrictive layer on magnetoelectric properties in lead zirconate titanate/terfenol-D laminate composites. J. Am. Ceram. Soc. 84, 2905–2908 (2001).

    Article  CAS  Google Scholar 

  8. S. Dong, J. Zhai, J. Li, and D. Viehland: Near-ideal magnetoelectricity in high-permeability magnetostrictive/piezofiber laminates with a (2-1) connectivity. Appl. Phys. Lett. 89, 252904 (2006).

    Article  CAS  Google Scholar 

  9. T-D. Onuta, Y. Wang, C.J. Long, and I. Takeuchi: Energy harvesting properties of all-thin-film multiferroic cantilevers. Appl. Phys. Lett. 99, 203506 (2011).

    Article  CAS  Google Scholar 

  10. C. Kirchhof, M. Krantz, I. Teliban, R. Jahns, S. Marauska, B. Wagner, R. Knöchel, M. Gerken, D. Meyners, and E. Quandt: Giant magnetoelectric effect in vacuum. Appl. Phys. Lett. 102, 232905 (2013).

    Article  CAS  Google Scholar 

  11. R. Jahns, H. Greve, E. Woltermann, E. Lage, E. Quandt, and R. Knöchel: Magnetoelectric sensors for biomagnetic measurements. In 2011 IEEE International Workshop on Medical Measurements and Applications Proceedings (MeMeA) (held in Bari, Italy, May 30–31); pp. 107–110.

  12. R. Jahns, H. Greve, E. Woltermann, E. Quandt, and R.H. Knöchel: Noise performance of magnetometers with resonant thin-film magnetoelectric sensors. IEEE Trans. Instrum. Meas. 60, 2995 (2011).

    Article  Google Scholar 

  13. E. Yarar, V. Hrkac, C. Zamponi, A. Piorra, L. Kienle, and E. Quandt: Low temperature aluminum nitride thin films for sensory applications. AIP Adv. 6(7), 075115 (2016).

    Article  CAS  Google Scholar 

  14. S. Salzer, R. Jahns, A. Piorra, I. Teliban, J. Reermann, M. Höft, E. Quandt, and R. Knöchel: Tuning fork for noise suppression in magnetoelectric sensors. Sens. Actuators, A 237, 91–95 (2016).

    Article  CAS  Google Scholar 

  15. R. Jahns, H. Greve, E. Woltermann, E. Quandt, and R. Knöchel: Sensitivity enhancement of magnetoelectric sensors through frequency-conversion. Sens. Actuators, A. 183, 16–21 (2012).

    Article  CAS  Google Scholar 

  16. K-H. Shin, M. Inoue, and K-I. Arai: Elastically coupled magneto-electric elements with highly magnetostrictive amorphous films and PZT substrates. Smart Mater. Struct. 9, 357–361 (2000).

    Article  CAS  Google Scholar 

  17. H. Greve, E. Woltermann, H-J. Quenzer, B. Wagner, and E. Quandt: Giant magnetoelectric coefficients in (Fe90Co10)78Si12B10-AlN thin film composites. Appl. Phys. Lett. 96, 182501 (2010).

    Article  CAS  Google Scholar 

  18. S. Zabel, C. Kirchhof, E. Yarar, D. Meyners, E. Quandt, and F. Faupel: Phase modulated magnetoelectric delta-E effect sensor for sub-nano Tesla magnetic fields. Appl. Phys. Lett. 107, 152402 (2015).

    Article  CAS  Google Scholar 

  19. A. Piorra, R. Jahns, I. Teliban, J.L. Gugat, M. Gerken, R. Knöchel, and E. Quandt: Magnetoelectric thin film composites with interdigital electrodes. Appl. Phys. Lett. 103, 032902 (2013).

    Article  CAS  Google Scholar 

  20. V. Röbisch, E. Yarar, N.O. Urs, I. Teliban, R. Knöchel, J. McCord, E. Quandt, and D. Meyners: Exchange biased magnetoelectric composites for magnetic field sensor application by frequency conversion. J. Appl. Phys. 117, 17B513 (2015). (see also Supplementary Material).

    Article  CAS  Google Scholar 

  21. Z. Xing, J. Zhai, J. Li, and D. Viehland: Investigation of external noise and its rejection in magnetoelectric sensor design. J. Appl. Phys. 106, 024512 (2009).

    Article  CAS  Google Scholar 

  22. X. Zhuang, C. Cordier, S. Saez, M.L.C. Sing, C. Dolabdjian, J. Gao, J.F. Li, and D. Viehland: Theoretical analysis of the intrinsic magnetic noise spectral density of magnetostrictive-piezoelectric laminated composites. J. Appl. Phys. 109, 124512 (2011).

    Article  CAS  Google Scholar 

  23. M. Li, W. Zhiguang, Y. Wang, J. Li, and D. Viehland: Giant magnetoelectric effect in self-biased laminates under zero magnetic field. Appl. Phys. Lett. 102, 082404 (2013).

    Article  CAS  Google Scholar 

  24. S-C. Yang, C-S. Park, K-H. Cho, and S. Priya: Self-biased magnetoelectric response in three-phase laminates. J. Appl. Phys. 108, 093706 (2010).

    Article  CAS  Google Scholar 

  25. K. Tadahiko and S. Isao: Self Bias Magnetostrictive Material. Japanese Patent 09083037 A, March 28, 1997.

  26. J. Zhang, P. Li, Y. Wen, W. He, A. Yang, D. Wang, C. Yang, and C. Lu: Giant self-biased converse magnetoelectric effect in multiferroic heterostructure with single-phase magnetostrictive materials. Appl. Phys. Lett. 105, 172408 (2014).

    Article  CAS  Google Scholar 

  27. S.K. Mandal, G. Sreenivasulu, V.M. Petrov, and G. Srinivasan: Flexural deformation in a compositionally stepped ferrite and magnetoelectric effects in a composite with piezoelectrics. Appl. Phys. Lett. 96, 192502 (2010).

    Article  CAS  Google Scholar 

  28. U. Laletin, G. Sreenivasulu, V.M. Petrov, T. Garg, A.R. Kulkarni, N. Venkataramani, and G. Srinivasan: Hysteresis and remanence in magnetoelectric effects in functionally graded magnetostrictive-piezoelectric layered composites. Phys. Rev. B: Condens. Matter Mater. Phys. 85, 104404 (2012).

    Article  CAS  Google Scholar 

  29. W.Q. Jing and F. Fang: Stress-induced self-biasing of magnetoelectric coupling in embedded Ni/PZT/FeNi composite. Appl. Phys. Lett. 106, 212901 (2015).

    Article  CAS  Google Scholar 

  30. E. Kolkholm: The measurement of magnetostriction in ferromagnetic thin films. IEEE Trans. Mag. 12, 819–821 (1976).

    Article  Google Scholar 

  31. R. Jahns, A. Piorra, E. Lage, C. Kirchhof, D. Meyners, J.L. Gugat, M. Krantz, M. Gerken, R. Knöchel, and E. Quandt: Giant magnetoelectric effect in thin-film composites. J. Am. Ceram. Soc. 96, 1673–1681 (2013).

    Article  CAS  Google Scholar 

  32. E. Lage, F. Woltering, E. Quandt, and D. Meyners: Exchange biased magnetoelectric composites for vector field magnetometers. J. Appl. Phys. 113, 17C725 (2013).

    Article  CAS  Google Scholar 

  33. X. Zhuang, M.L.C. Sing, C. Dolabdjian, Y. Wang, P. Finkel, J. Li, and D. Viehland: Mechanical noise limit of a strain-coupled magneto (elasto) electric sensor operating under a magnetic or an electric field modulation. IEEE Sens. J. 15, 1575–1587 (2015).

    Article  Google Scholar 

  34. S. Salzer, M. Höft, R. Knöchel, P. Hayes, E. Yarar, A. Piorra, and E. Quandt: Comparison of frequency conversion techniques for magnetoelectric sensors. Procedia Eng. 120, 940–943 (2015).

    Article  CAS  Google Scholar 

  35. P. Hayes, S. Salzer, J. Reermann, E. Yarar, V. Röbisch, A. Piorra, D. Meyners, M. Höft, R. Knöchel, G. Schmidt, and E. Quandt: Electrically modulated magnetoelectric sensors. Appl. Phys. Lett. 108, 182902 (2016).

    Article  CAS  Google Scholar 

  36. N.O. Urs, I. Teliban, A. Piorra, R. Knöchel, E. Quandt, and J. McCord: Origin of hysteretic magnetoelastic behavior in magnetoelectric 2–2 composites. Appl. Phys. Lett. 105, 202406 (2014).

    Article  CAS  Google Scholar 

  37. H. Xi, X. Qian, M.C. Lu, L. Mei, S. Rupprecht, Q.X. Yang, and Q.M. Zhang: A room temperature ultrasensitive magnetoelectric susceptometer for quantitative tissue iron detection. Sci. Rep. 6, 29740 (2016).

    Article  CAS  Google Scholar 

  38. Deep-Brain Stimulation for Parkinson’s Disease Study Group: Deep-brain stimulation of the subthalamic nucleus of the pars interna of the globus pallidus in Parkinson’s disease. N. Engl. J. Med. 345, 956–963 (2001).

    Article  Google Scholar 

  39. K. Sternickel and A. Braginski: Biomagnetism using SQUIDs: Status and perspectives. Supercond. Sci. Technol. 19, S160–S171 (2006).

    Article  CAS  Google Scholar 

  40. H. Nowak: Biomagnetic instrumentation. In Magnetism in Medicine, W. Andrä and H. Nowak, eds. (Wiley-VCH, Berlin, Germany, 1998); pp. 88–135.

    Google Scholar 

  41. J.P. Wikswo, Jr.: SQUID magnetometers for biomagnetism and nondestructive testing: Important questions and initial answers. IEEE Trans. Appl. Supercond. 5, 74–120 (1995).

    Article  Google Scholar 

  42. K. Wang, S. Tajima, D. Song, N. Hamada, C. Cai, and T. Uchiyama: Auditory evoked field measurement using magneto-impedance sensors. J. Appl. Phys. 117, 17B306 (2015).

    Article  CAS  Google Scholar 

  43. Y. Mohri, T. Uchiyama, M. Yamada, and K. Mohri: Detection of back magneto-cardiogram for heart disease using pico-Tesla resolution amorphous wire magneto-impedance sensor. In Session 2A11a SC4: Recent Advances in Magneto-impedance Sensors (2014); p. 551.

  44. T.H. Sander, J. Preusser, R. Mhaskar, J. Kitching, L. Trahms, and S. Knappe: Magnetoencephalography with a chip-scale atomic magnetometer. Biomed. Opt. Express 3, 981–990 (2012).

    Article  CAS  Google Scholar 

  45. O. Alem, T.H. Sander, R. Mhaskar, J. LeBlanc, H. Eswaran, U. Steinhoff, Y. Okada, J. Kitching, L. Trahms, and S. Knappe: Fetal magnetocardiography measurements with an array of microfabricated optically pumped magnetometers. Phys. Med. Biol. 60, 4797 (2015).

    Article  Google Scholar 

  46. W.M.M. Schuepbach, J. Rau, K. Knudsen, J. Volkmann, P. Krack, L. Timmermann, T.D. Hälbig, H. Hesekamp, S.M. Navarro, N. Meier, D. Falk, M. Mehdorn, S. Paschen, M. Maarouf, M.T. Barbe, G.R. Fink, A. Kupsch, D. Gruber, G-H. Schneider, E. Seigneuret, A. Kistner, P. Chaynes, F. Ory-Magne, C. Brefel Courbon, J. Vesper, A. Schnitzler, L. Wojtecki, J-L. Houeto, B. Bataille, D. Maltête, P. Damier, S. Raoul, F. Sixel-Doering, D. Hellwig, A. Gharabaghi, R. Krüger, M.O. Pinsker, F. Amtage, J-M. Régis, T. Witjas, S. Thobois, P. Mertens, M. Kloss, A. Hartmann, W.H. Oertel, B. Post, H. Speelman, Y. Agid, C. Schade-Brittinger, and G. Deuschl: Neurostimulation for Parkinson’s disease with early motor complications. N. Engl. J. Med. 368, 610–622 (2013).

    Article  CAS  Google Scholar 

  47. G. Deuschl and Y. Agid: Subthalamic neurostimulation for Parkinson’s disease with early fluctuations: Balancing the risks and benefits. Lancet Neurol. 12, 1025–1034 (2013).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to thank the German Research Foundation DFG for financial support through the Collaborative Research Center SFB 855 ‘Magnetoelectric composites—future biomagnetic interfaces’ and the Grant PAK 902. The authors acknowledge the permission to reproduce article extracts provided by Nature Publishing Group, Elsevier, AIP Publishing LLC and IEEE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Meyners.

Additional information

This paper has been selected as an Invited Feature Paper.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Röbisch, V., Salzer, S., Urs, N.O. et al. Pushing the detection limit of thin film magnetoelectric heterostructures. Journal of Materials Research 32, 1009–1019 (2017). https://doi.org/10.1557/jmr.2017.58

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.58

Navigation