Skip to main content
Log in

Investigation of local brittle zone in multipass welded joint of NiCrMoV steel with heavy section

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Welding was successfully used in the fabrication of low pressure steam turbine rotors for nuclear power plants. In this paper, the local brittle zone of the welded joint in NiCrMoV steel with heavy section was investigated by cross-zone fracture toughness test and the effect of martensite–austenite constituent in the simulated reheated zone of welds with different second peak temperature on toughness was analyzed. The results showed that the crack propagated in unstable manner in the reheated zone of welds where the martensite–austenite constituent promoted the initiation and propagation of the crack. The fine structure of martensite–austenite constituent contained retained austenite, martensite, and martensite–austenite mixture microstructure. The impact toughness deteriorated drastically in the incomplete phase transition zone for the simulated reheated zone of welds related to the formation of mixture microstructure in which large blocky martensite–austenite constituent at prior austenite grain boundaries and inside the grains were distributed in the shape of network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. P. Liu, F. Lu, X. Liu, H. Ji, and Y. Gao: Study on fatigue property and microstructure characteristics of welded nuclear power rotor with heavy section. J. Alloys Compd. 584, 430 (2014).

    Article  CAS  Google Scholar 

  2. X. Liu and Z. Wen: Best available techniques and pollution control: A case study on China’s thermal power industry. J. Cleaner Prod. 23, 113 (2012).

    Article  Google Scholar 

  3. Z.D. Liu: Status of the power industry in China and overall progress for a-usc technology. Presented at the 8th International Conference on Advances in Materials Technology for Fossil Power Plants (ASM International, Materials Park, Ohio, 2016).

    Google Scholar 

  4. R.L. Klueh: Elevated temperature ferritic and martensitic steels and their application to future nuclear reactors. Int. Mater. Rev. 50, 287 (2005).

    Article  CAS  Google Scholar 

  5. R.K. Chen, J.F. Gu, L.Z. Han, and J.S. Pan: Novel process to refine grain size of NiCrMoV steel. Mater. Sci. Technol. 28, 773 (2012).

    Article  CAS  Google Scholar 

  6. M. Ramakrishnan and V. Muthupandi: Application of submerged arc welding technology with cold wire addition for drum shell long seam butt welds of pressure vessel components. Int. J. Adv. Manuf. Technol. 65, 945 (2013).

    Article  Google Scholar 

  7. T. Shige, R. Magoshi, S. Itou, T. Ichimura, and Y. Kondou: Development of large-capacity, highly efficient welded rotor for steam turbines. Mitsubishi Heavy Ind. 38, 6 (2001).

    Google Scholar 

  8. I. Sattari-Far and M.R. Farahani: Effect of the weld groove shape and pass number on residual stresses in butt-welded pipes. Int. J. Pressure Vessels Piping 86, 723 (2009).

    Article  CAS  Google Scholar 

  9. S. Murugan, P.V. Kumar, B. Raj, and M.S.C. Bose: Temperature distribution during multipass welding of plates. Int. J. Pressure Vessels Piping 75, 891 (1998).

    Article  CAS  Google Scholar 

  10. S. Karaoğlu, and A. Seçgin: Sensitivity analysis of submerged arc welding process parameters. J. Mater. Process. Technol. 202, 500 (2008).

    Article  CAS  Google Scholar 

  11. V. Gunaraj and N. Murugan: Application of response surface methodology for predicting weld bead quality in submerged arc welding of pipes. J. Mater. Process. Technol. 88, 266 (1999).

    Article  Google Scholar 

  12. F. Lu, X. Liu, P. Wang, Q. Wu, H. Cui, and X. Huo: Microstructural characterization and wide temperature range mechanical properties of NiCrMoV steel welded joint with heavy section. J. Mater. Res. 30, 2108 (2015).

    Article  CAS  Google Scholar 

  13. K. Prasad and D.K. Dwivedi: Some investigations on microstructure and mechanical properties of submerged arc welded HSLA steel joints. Int. J. Adv. Manuf. Technol. 36, 475 (2008).

    Article  Google Scholar 

  14. X. Liu, Z. Cai, X. Deng, and F. Lu: Investigation on the weakest zone in toughness of 9Cr/NiCrMoV dissimilar welded joint and its enhancement. J. Mater. Res. 32, 3117 (2017).

    Article  CAS  Google Scholar 

  15. L. Yu, H.H. Wang, X.L. Wang, G. Huang, T.P. Hou, and K.M. Wu: Improvement of impact toughness of simulated heat affected zone by addition of aluminium. Mater. Sci. Technol. 30, 1951 (2014).

    Article  CAS  Google Scholar 

  16. X.J. Di, X. An, F.J. Cheng, D.P. Wang, X.J. Guo, and Z.K. Xue: Effect of martensite–austenite constituent on toughness of simulated inter-critically reheated coarse-grained heat-affected zone in X70 pipeline steel. Sci. Technol. Weld. Joining 21, 366 (2016).

    Article  CAS  Google Scholar 

  17. J.H. Chen, Y. Kikuta, T. Araki, M. Yoneda, and Y. Matsuda: Micro-fracture behaviour induced by M–A constituent (Island Martensite) in simulated welding heat affected zone of HT80 high strength low alloyed steel. Acta Metall. 32, 1779 (1984).

    Article  CAS  Google Scholar 

  18. Y. Li and T.N. Baker: Effect of morphology of martensite–austenite phase on fracture of weld heat affected zone in vanadium and niobium microalloyed steels. Mater. Sci. Technol. 26, 1029 (2010).

    Article  CAS  Google Scholar 

  19. C.L. Davis and J.E. King: Cleavage initiation in the intercritically reheated coarse-grained heat-affected zone: Part I. Fractographic evidence. Metall. Mater. Trans. A 25, 563 (1994).

    Article  Google Scholar 

  20. L. Lan, C. Qiu, H. Song, and D. Zhao: Correlation of martensite–austenite constituent and cleavage crack initiation in welding heat affected zone of low carbon bainitic steel. Mater. Lett. 125, 86 (2014).

    Article  CAS  Google Scholar 

  21. C.L. Davis and J.E. King: Effect of cooling rate on intercritically reheated microstructure and toughness in high strength low alloy steel. Mater. Sci. Technol. 9, 8 (1993).

    Article  CAS  Google Scholar 

  22. Y. Shi and Z. Han: Effect of weld thermal cycle on microstructure and fracture toughness of simulated heat-affected zone for a 800 MPa grade high strength low alloy steel. J. Mater. Process. Technol. 207, 30 (2008).

    Article  CAS  Google Scholar 

  23. Z. Zhu, L. Kuzmikova, H. Li, and F. Barbaro: Effect of inter-critically reheating temperature on microstructure and properties of simulated inter-critically reheated coarse grained heat affected zone in X70 steel. Mater. Sci. Eng., A 605, 8 (2014).

    Article  CAS  Google Scholar 

  24. S. Moeinifar, A.H. Kokabi, and H.R.M. Hosseini: Effect of tandem submerged arc welding process and parameters of Gleeble simulator thermal cycles on properties of the intercritically reheated heat affected zone. Mater. Des. 32, 869 (2011).

    Article  CAS  Google Scholar 

  25. F. Matsuda, Y. Fukada, H. Okada, C. Shiga, K. Ikeuchi, Y. Horii, T. Shiwaku, and S. Suzuki: Review of mechanical and metallurgical investigations of martensite–austenite constituent in welded joints in Japan. Welding World Le Sou 3, 134 (1996).

    Google Scholar 

  26. I. Hiroshi, O. Hiroaki, T. Toyoaki, T.O.I.O. Technology, and P.K.C. Ltd.: Effect of martensite–austenite constituent on HAZ toughness of a high strength steel. Trans. Jpn. Weld. Soc. 11, 87 (1980).

    Google Scholar 

  27. B.C. Kim, S. Lee, N.J. Kim, and D.Y. Lee: Microstructure and local brittle zone phenomena in high-strength low-alloy steel welds. Metall. Trans. A 22, 139 (1991).

    Article  Google Scholar 

  28. X.L. Wang, X.M. Wang, C.J. Shang, and R.D.K. Misra: Characterization of the multi-pass weld metal and the impact of retained austenite obtained through intercritical heat treatment on low temperature toughness. Mater. Sci. Eng., A 649, 282 (2016).

    Article  CAS  Google Scholar 

  29. X. Li, Y. Fan, X. Ma, S.V. Subramanian, and C. Shang: Influence of martensite–austenite constituents formed at different intercritical temperatures on toughness. Mater. Des. 67, 457 (2015).

    Article  CAS  Google Scholar 

  30. O.M. Akselsen, Ø. Grong, and J.K. Solberg: Structure–property relationships in intercritical heat affected zone of low-carbon microalloyed steels. Mater. Sci. Technol. 3, 649 (1987).

    Article  CAS  Google Scholar 

  31. X. Li, X. Ma, S.V. Subramanian, C. Shang, and R.D.K. Misra: Influence of prior austenite grain size on martensite–austenite constituent and toughness in the heat affected zone of 700 MPa high strength linepipe steel. Mater. Sci. Eng., A 616, 141 (2014).

    Article  CAS  Google Scholar 

  32. C.A.N. Lanzillotto and F.B. Pickering: Structure–property relationships in dual-phase steels. Met. Sci. 16, 371 (1982).

    Article  CAS  Google Scholar 

  33. Y. Sakuma, O. Matsumura, and H. Takechi: Mechanical properties and retained austenite in intercritically heat-treated bainite-transformed steel and their variation with Si and Mn additions. Metall. Mater. Trans. A 22, 489 (1991).

    Article  Google Scholar 

  34. S. Lee, B.C. Kim, and D.Y. Lee: Fracture mechanism in coarse grained HAZ of HSLA steel welds. Scr. Metall. 23, 995 (1989).

    Article  CAS  Google Scholar 

  35. R.S. Ranade, F.J. Barbara, J.G. Williams, P.R. Munroe, and P. Krauklis: Relationship between martensite islands and haz fracture toughness in welded Ni–Cu structural steels. J. Phys. IV 5, 311 (1995).

    CAS  Google Scholar 

  36. S. Moeinifar, A.H. Kokabi, and H.R.M. Hosseini: Influence of peak temperature during simulation and real thermal cycles on microstructure and fracture properties of the reheated zones. Mater. Des. 31, 2948 (2010).

    Article  CAS  Google Scholar 

  37. D.A. Porter, K.E. Easterling, and M. Sherif: Phase Transformations in Metals and Alloys, revised Reprint (CRC Press, Boca Raton, USA, 2009).

    Google Scholar 

  38. Y.I. Komizo and Y. Fukada: CTOD properties and M–A constituent in the HAZ of C–Mn microalloyed steel. J. Jpn. Weld. Soc. 6, 41 (1988).

    Article  CAS  Google Scholar 

  39. P. Mohseni, J.K. Solberg, M. Karlsen, O.M. Akselsen, and E. Østby: Investigation of mechanism of cleavage fracture initiation in intercritically coarse grained heat affected zone of HSLA steel. Mater. Sci. Technol. 28, 1261 (2012).

    Article  CAS  Google Scholar 

  40. Z. Zhu, L. Kuzmikova, H. Li, and F. Barbaro: The effect of chemical composition on microstructure and properties of intercritically reheated coarse-grained heat-affected zone in X70 steels. Metall. Mater. Trans. B 45, 229 (2014).

    Article  CAS  Google Scholar 

  41. H. Okada, K. Ikeuchi, F. Matsuda, and I. Hrivnak: Effects of M–A constituent on fracture behaviour of weld HAZs: Deterioration and improvement of HAZ toughness in 780 and 980 MPa class HSLA steels welded with high heat input (5th report). Weld. Int. 9, 621 (1995).

    Article  Google Scholar 

  42. W.W. Xu, Q.F. Wang, T. Pan, and C.F. Yang: Effect of welding heat input on simulated HAZ microstructure and toughness of a V–N microalloyed steel. J. Iron Steel Res. Int. 14, 234 (2007).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENT

The authors gratefully acknowledge the financial support by the National Natural Science Foundation of China under Grant No. 51775300.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhipeng Cai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Cai, Z., Li, K. et al. Investigation of local brittle zone in multipass welded joint of NiCrMoV steel with heavy section. Journal of Materials Research 33, 923–934 (2018). https://doi.org/10.1557/jmr.2017.467

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.467

Navigation