Skip to main content
Log in

Texture-engineered ceramics—Property enhancements through crystallographic tailoring

  • Invited Review
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

An Erratum to this article was published on 01 March 2018

This article has been updated

Abstract

Texture-engineered ceramics enable access to a vast array of novel texture-property relations leading to property values ranging between those of single crystals and isotropic bulk ceramics. Recently developed templated grain growth and magnetic alignment texturing methods yield high quality crystallographic texture, and thus significant advances in achievable texture-engineered properties in magnetic, piezoelectric, electronic, optical, thermoelectric, and structural ceramics. In this paper, we outline the fundamental basis for these texture-engineered properties and review recent contributions to the field of texture-engineered ceramics with an update on the properties of textured lead-free and lead-based piezoelectrics. We propose that further property improvements can be realized through development of processes that improve crystallographic alignment of the grain structure, create biaxial texture, and explore a wider array of crystallographic orientations. There is a critical need to model the physics of texture-engineered ceramics, and more comprehensively characterize texture, thus enabling testing of texture orientation-property relations and materials performance. We believe that in situ measurements of texture evolution can lead to a more fundamental and comprehensive understanding of the mechanisms of texture development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12
FIG. 13
FIG. 14
FIG. 15

Similar content being viewed by others

Change history

References

  1. G.W. Rathenau, J. Smit, and A.L. Stuyts: Ferromagnetic properties of hexagonal iron-oxide compounds with and without a preferred orientation. Z. Physik 133, 250 (1952).

    Article  CAS  Google Scholar 

  2. G.L. Messing, T. Trolier-McKinstry, E.M. Sabolsky, C. Duran, S. Kwon, B. Brahmaroutu, P. Park, H. Yilmaz, P.W. Rehrig, K.B. Eitel, E. Suvaci, M. Seabaugh, and K.S. Oh: Templated grain growth of textured piezoelectric ceramics. Crit. Rev. Solid State Mater. Sci. 29, 45 (2004).

    Article  CAS  Google Scholar 

  3. S. Jin and J.E. Graebner: Processing and fabrication techniques for bulk high- Tc superconductors: A critical review. Mater. Sci. Eng., B 7, 243 (1991).

    Article  Google Scholar 

  4. E. Guilmeau, H. Itahara, T. Tani, D. Chateigner, and D. Grebille: Quantitative texture analysis of grain-aligned (Ca2CoO3)0.62CoO2 ceramics processed by the reactive-templated grain growth method. J. Appl. Phys. 97, 064902 (2005).

    Article  CAS  Google Scholar 

  5. X. Mao, S. Wang, S. Shimai, and J. Guo: Transparent polycrystalline alumina ceramics with orientated optical axes. J. Am. Ceram. Soc. 91, 3431 (2008).

    Article  CAS  Google Scholar 

  6. H. Imamura, K. Hirao, M.E. Brito, M. Toriyama, and S. Kanzaki: Further improvement in mechanical properties of highly anisotropic silicon nitride ceramics. J. Am. Ceram. Soc. 83, 495 (2000).

    Article  CAS  Google Scholar 

  7. G.E. Youngblood and R.S. Gordon: Texture-conductivity relationships in polycrystalline lithia-stabilized β″-alumina. Ceramurgia Intl. 4, 93 (1978).

    Article  CAS  Google Scholar 

  8. A.H. Heuer, D.J. Sellers, and W.H. Rhodes: Hot-working of aluminum oxide: I. Primary recrystallization and texture. J. Am. Ceram. Soc. 52, 468 (1969).

    Article  CAS  Google Scholar 

  9. A. Carman, E. Pereloma, and Y. Chen: Hot forging of a textured α-SiAlON ceramic. J. Am. Ceram. Soc. 89, 478 (2006).

    Article  CAS  Google Scholar 

  10. J.J. Went, G.W. Rathenau, E.W. Gorter, and G.W. van Oosterhout: Hexagonal iron-oxide compounds as permanent-magnet materials. Phys. Rev. 86, 424 (1952).

    Article  CAS  Google Scholar 

  11. A. Goyal, R. Feenstra, F.A. List, M. Paranthaman, D.F. Lee, D.M. Kroeger, D.B. Beach, J.S. Morrell, T.G. Chirayil, D.T. Verebelyi, X. Cui, E.D. Specht, D.K. Christen, and P.M. Martin: Using RABiTS to fabricate high-temperature superconducting wire. JOM 51, 19 (1999).

    Article  CAS  Google Scholar 

  12. S. Jin, R.C. Sherwood, R.B. van Dover, T.H. Tiefel, and D.W. Johnson, Jr.: High TC superconductors-composite wire fabrication. Appl. Phys. Lett. 51, 203 (1987).

    Article  CAS  Google Scholar 

  13. T. Tani: Texture engineering of electronic ceramics by the reactive-templated grain growth method. J. Ceram. Soc. Jpn. 114, 363 (2006).

    Article  CAS  Google Scholar 

  14. H. Yilmaz, G.L. Messing, and S. Trolier-McKinstry: (Reactive) templated grain growth of textured sodium bismuth titanate (Na1/2Bi1/2TiO3–BaTiO3) ceramics–I. Processing. J. Electroceram. 11, 207 (2003).

    Article  CAS  Google Scholar 

  15. Y. Sakka and T.S. Suzuki: Textured development of feeble magnetic ceramics by colloidal processing under high magnetic field. J. Ceram. Soc. Jpn. 113, 26 (2005).

    Article  CAS  Google Scholar 

  16. M.M. Seabaugh, I.H. Kerscht, and G.L. Messing: Texture development by templated grain growth in liquid phase sintered α-alumina. J. Am. Ceram. Soc. 80, 1181 (1997).

    Article  CAS  Google Scholar 

  17. T.S. Suzuki, T. Uchikoshi, and Y. Sakka: Control of texture in alumina by colloidal processing in a strong magnetic field. Sci. Technol. Adv. Mater. 7, 356 (2006).

    Article  CAS  Google Scholar 

  18. J.L. Jones, B.J. Iverson, and K.J. Bowman: Texture and anisotropy of polycrystalline piezoelectrics. J. Am. Ceram. Soc. 90, 2297 (2007).

    Article  CAS  Google Scholar 

  19. F.K. Lotgering: Topotactical reactions with ferrimagnetic oxides having hexagonal crystal structures-I. J. Inorg. Nucl. Chem. 9, 113 (1959).

    Article  CAS  Google Scholar 

  20. K.H. Brosnan, G.L. Messing, R.J. Meyer, Jr., and M.D. Vaudin: Texture measurements in 〈001〉 fiber-oriented PMN–PT. J. Am. Ceram. Soc. 89, 1965 (2006).

    Article  CAS  Google Scholar 

  21. W.A. Dollase: Correction for preferred orientation in powder diffractometry: Application of the March model. J. Appl. Crystallogr. 19, 267 (1986).

    Article  CAS  Google Scholar 

  22. L.D. Landau, L.P. Pitaevskii, and E.M. Liftshitz: Electrodynamics of Continuous Media, 2nd ed., Vol. 8, Course of Theoretical Physics (Oxford University Press, Oxford, England, 2004).

    Google Scholar 

  23. R.C. Pullar: A review of the synthesis, properties and applications of hexaferrite ceramics. Prog. Mater. Sci. 57, 1191 (2012).

    Article  CAS  Google Scholar 

  24. A.L. Stuijts, G.W. Rathenau, and G.H. Weber: Ferroxdure II and III, anisotropic permanent magnet materials. In Ferrites, J. Smit and H.P.J. Wijn, eds., Vol. 16 (Philips Technical Library, Eindhoven, Netherlands, 1959); p. 141.

    Google Scholar 

  25. Y. Chen, A. Daigle, T. Fitchorov, B. Hu, M. Geiler, and A. Geiler: Electronic tuning of magnetic permeability in Co2Z hexaferrite toward high frequency electromagnetic device miniaturization. Appl. Phys. Lett. 98, 202502 (2011).

    Article  CAS  Google Scholar 

  26. G. Jian, F. Meng, D. Zhou, Q. Fu, Z. Du, and C. Yan: Fabrication of textured CoFe2O4 ceramics by novel RTGG method using rod-like α-FeOOH particles as templates. Mater. Chem. Phys. 162, 380 (2015).

    Article  CAS  Google Scholar 

  27. P. Chang, L. He, D. Wei, and H. Wang: Textured z-type hexaferrite Ba3Co2Fe24O41, ceramics with high permeability by reactive templated grain growth method. J. Eur. Ceram. Soc. 36, 2519 (2016).

    Article  CAS  Google Scholar 

  28. J.P. Rush, C.J. May-Miller, K.G.B. Palmer, N.A. Rutter, A.R. Dennis, Y-H. Shi, D.A. Cardwell, and J.H. Durrell: Transport Jc in bulk superconductors: A practical approach?. IEEE Trans. Appl. Supercond. 26, 6800904 (2016).

    Article  Google Scholar 

  29. B. Raveau: Texturing of high- Tc superconductors. Supercond. Sci. Technol. 12, R115 (1999).

    Article  Google Scholar 

  30. C. His, N. Chardon, R. Kuentzler, and S. Vilminot: Elaboration and characterization of YBa2Cu3O7−x thick tapes. J. Mater. Sci. 26, 4829 (1991).

    Article  CAS  Google Scholar 

  31. D.M. Feldmann, T.G. Holesinger, R. Feenstra, and D.C. Larbalestier: A review of the influence of grain boundary geometry on the electromagnetic properties of polycrystalline YBa2Cu3O7−x films. J. Am. Ceram. Soc. 91, 1869 (2008).

    Article  CAS  Google Scholar 

  32. A. Goyal, M.P. Paranthaman, and U. Schopp: The RABiTS approach: Using rolling-assisted biaxially textured substrates for high-performance YBCO superconductors. MRS Bull. 29, 552 (2004).

    Article  CAS  Google Scholar 

  33. M.A. Susner, T.W. Daniels, M.D. Sumption, M.A. Rindfleisch, C.J. Thong, and E.W. Collings: Drawing induced texture and the evolution of superconductive properties with heat treatment time in powder-in-tube in situ processed MgB2 strands. Supercond. Sci. Tech. 25, 065002 (2012).

    Article  CAS  Google Scholar 

  34. D. Dimos, P. Chaudhari, J. Mannhart, and F.K. LeGoues: Orientation dependence of grain-boundary critical currents in YBa2Cu3O7−δ bicrystals. Phys. Rev. Lett. 61, 219 (1988).

    Article  CAS  Google Scholar 

  35. G-Z. Li, J-W. Li, and W-M. Yang: A combined powder melt and infiltration growth technique for fabricating nano-composited Y−Ba−Cu−O single-grain superconductor. Supercond. Sci. Technol. 28, 105002 (2015).

    Article  CAS  Google Scholar 

  36. Y. Shi, J.H. Durrell, A.R. Dennis, K. Huang, D.K. Namburi, D. Zhou, and D.A. Cardwell: Multiple seeding for the growth of bulk GdBCO-Ag superconductors with single grain behaviour. Supercond. Sci. Technol. 30, 015003 (2017).

    Article  CAS  Google Scholar 

  37. A. Bhargava, J. Schwartz, J.A. Alarco, and I.D.R. Mackinnon: Progress towards slip-casting YBa2Cu3O7−x monoliths. Mater. Lett. 30, 199 (1997).

    Article  CAS  Google Scholar 

  38. L.C. Pathak: Fabrication and sintering characteristics of doctor blade YBCO-Ag tapes. Ceram. Int. 30, 417 (2004).

    Article  CAS  Google Scholar 

  39. S.E. Dorris, M.T. Lanagan, D.M. Moffatt, H.J. Leu, C.A. Youngdahl, U. Balachandran, A. Cazzato, D.E. Bloomberg, and K.C. Goretta: Y2BaCuO5 as a substrate for YBa2Cu3Ox. Jpn. J. Appl. Phys. 28, 1415 (1989).

    Article  Google Scholar 

  40. P.J. McGinn, W. Chen, N. Zhu, U. Balachandran, and M.T. Lanagan: Texture processing of extruded YBa2Cu3O6+ x wires by zone melting. Phys. C 165, 480 (1990).

    Article  CAS  Google Scholar 

  41. G.S. Grader and D.W. Johnson, Jr.: Forming methods for high Tc superconductors. Thermochim. Acta 174, 239 (1991).

    Article  CAS  Google Scholar 

  42. K.G. Frase, G.C. Farrington, and J.O. Thomas: Proton transport in the β/β″-aluminas. Annu. Rev. Mater. Sci. 14, 279 (1984).

    Article  CAS  Google Scholar 

  43. J.V.L. Beckers, K.J. van der Bent, and S.W. de Leeuw: Ionic conduction in Na+-β-alumina studied by molecular dynamics simulation. Solid State Ionics 133, 217 (2000).

    Article  CAS  Google Scholar 

  44. J.W. Fergus: Ion transport in sodium ion conducting solid electrolytes. Solid State Ionics 227, 102 (2012).

    Article  CAS  Google Scholar 

  45. L.C. de Jonghe and J.B. Hall: Ion current concentration in grain boundaries of sodium beta alumina. Scr. Mater. 10, 285 (1976).

    Google Scholar 

  46. L.C. De Jonghe: Grain boundaries and ionic conduction in sodium beta alumina. J. Mater. Sci. 14, 33 (1979).

    Article  Google Scholar 

  47. C.K. Kuo, A. Tan, and P.S. Nicholson: Solid state ionics impedance analysis as a tool for designing β″-alumina microstructures. Solid State Ionics 48, 315 (1991).

    Article  CAS  Google Scholar 

  48. A. Kishimoto and K. Shimokawa: Preferential orientation dependent mechanical and electrical properties in Naβ-alumina ceramics. Key Eng. Mater. 301, 147 (2006).

    Article  CAS  Google Scholar 

  49. A. Hooper: A study oft he electrical properties of single-crystal and polycrystalline β-alumina using complex plane analysis. J. Phys. D: Appl. Phys. 10, 1487 (1977).

    Article  CAS  Google Scholar 

  50. A. Tan, C.K. Kuo, and P.S. Nicholson: Preparation and characterization of textured polycrystalline Na and K-β-aluminas. Solid State Ionics 42, 233 (1990).

    Article  CAS  Google Scholar 

  51. A. Tan, C. Kun Kuo, and P.S. Nicholson: The influence of grain-boundaries on the conductivity and ion-exchange rate of β″-alumina polycrystalline isomorphs. Solid State Ionics 45, 137 (1991).

    Article  CAS  Google Scholar 

  52. T. Ohta, M. Harata, and A. Imai: Preferred orientation on beta-alumina ceramics. Mater. Res. Bull. 11, 1343 (1976).

    Article  CAS  Google Scholar 

  53. A.V. Virkar, G.R. Miller, and R.S. Gordon: Resistivity-microstructure relations in lithia-stabilized polycrystalline β″-alumina. J. Am. Ceram. Soc. 61, 250 (1978).

    Article  CAS  Google Scholar 

  54. E. Butchereit, J. Schoonman, H.W. Zandbergen, C. Lutz-Elsner, M. Schreiber, and P. Wang: Microstructure-conductivity relationships in solid anisotropic ionically conducting materials. Mater. Res. Soc. Symp. Proc. 369, 433 (1995).

    Article  CAS  Google Scholar 

  55. A.P. De Kroon, F. Gstrein, G.W. Schafer, and F. Aldinger: Ionic conductivity of dense K-β-alumina ceramics: Microstructural dependence and the influence of phase transformations. Solid State Ionics 133, 107 (2000).

    Article  Google Scholar 

  56. H. Asaoka, R. Ogawa, H. Hayashi, and A. Kishimoto: Influence of kinds of aluminum source on the preferential orientation and properties of Naβ-alumina ceramics. J. Ceram. Soc. Jpn. 114, 719 (2006).

    Article  CAS  Google Scholar 

  57. J.L. Shi, J.H. Gao, and Z.X. Lin: The relation between microstructure and ionic conductivity of hot-pressed β-Al2O3. J. Mater. Sci. 24, 1827 (1989).

    Article  CAS  Google Scholar 

  58. K. Koganei, T. Oyama, M. Inada, N. Enomoto, and K. Hayashi: C-axis oriented β″-alumina ceramics with anisotropic ionic conductivity prepared by spark plasma sintering. Solid State Ionics 267, 22 (2014).

    Article  CAS  Google Scholar 

  59. R. Subasri and H. Näfe: Texture in Na-β-Al2O3 due to microwave processing. Mater. Chem. Phys. 112, 16 (2008).

    Article  CAS  Google Scholar 

  60. Y. Sakka, A. Honda, T.S. Suzuki, and Y. Moriyoshi: Fabrication of oriented ß-alumina from porous bodies by slip casting in a high magnetic field. Solid State Ionics 172, 341 (2004).

    Article  CAS  Google Scholar 

  61. Y. Sakka, T.S. Suzuki, and T. Uchikoshi: Fabrication and some properties of textured alumina-related compounds by colloidal processing in high-magnetic field and sintering. J. Eur. Ceram. Soc. 28, 935 (2008).

    Article  CAS  Google Scholar 

  62. V.V. Kharton, F.M.B. Marques, and A. Atkinson: Transport properties of solid oxide electrolyte ceramics: A brief review. Solid State Ionics 174, 135 (2004).

    Article  CAS  Google Scholar 

  63. K.R. Kendall, C. Navas, J.K. Thomas, and H-C. Zur Loye: Recent developments in oxide ion conductors: Aurivillius phases. Chem. Mater. 8, 642 (1996).

    Article  CAS  Google Scholar 

  64. N. Mahato, A. Banerjee, A. Gupta, S. Omar, and K. Balani: Progress in material selection for solid state oxide fuel cell technology: A review. Prog. Mater. Sci. 72, 141 (2015).

    Article  CAS  Google Scholar 

  65. L. Malavasi, C.A.J. Fisher, and M.S. Islam: Oxide-ion and proton conducting electrolyte materials for clean energy applications: Structural and mechanistic features. Chem. Soc. Rev. 39, 4370 (2010).

    Article  CAS  Google Scholar 

  66. K. Fukuda, T. Asaka, S. Hara, M. Oyabu, A. Berghout, E. Béchade, O. Masson, I. Julien, and P. Thomas: Crystal structure and oxide-ion conductivity along c-axis of Si-deficient apatite-type lanthanum silicate. Chem. Mater. 25, 2154 (2013).

    Article  CAS  Google Scholar 

  67. K. Fukuda, M. Okabe, and T. Asaka: Microtexture of c -axis-oriented polycrystalline lanthanum silicate oxyapatite formed by reactive diffusion. J. Am. Ceram. Soc. 99, 2816 (2016).

    Article  CAS  Google Scholar 

  68. D.L. Medlin and G.J. Snyder: Interfaces in bulk thermoelectric materials: A review for current opinion in colloid and interface science. Curr. Opin. Colloid Interface Sci. 14, 226 (2009).

    Article  CAS  Google Scholar 

  69. H. Ohta, W-S. Seo, and K. Koumoto: Thermoelectric properties of homologous compounds in the ZnO–In2O3 system. J. Am. Ceram. Soc. 79, 2193 (1996).

    Article  CAS  Google Scholar 

  70. I. Terasaki, Y. Sasago, and K. Uchinokura: Large thermoelectric power in NaCo2O4 single crystals. Phys. Rev. B: Condens. Matter Mater. Phys. 56, R12685 (1997).

    Article  CAS  Google Scholar 

  71. S. Li, R. Funahashi, I. Matsubara, K. Ueno, and H. Yamada: High temperature thermoelectric properties of oxide Ca9Co12O28. J. Mater. Chem. 9, 1659 (1999).

    Article  CAS  Google Scholar 

  72. J. Hejtmánek, M. Veverka, K. Knížek, H. Fujishiro, S. Hebert, Y. Klein, A. Maignan, C. Bellouard, and B. Lenoir: Cobaltites as Perspective Thermoelectrics, edited by J. Yang (Mater. Res. Soc. Symp. Proc. 886, Warrendale, PA, 2006) 1274-F01-07.1.

  73. H. Itahara, S. Tajima, and T. Tani: Synthesis of β-Co(OH)2 platelets by precipitation and hydrothermal methods. J. Ceram. Soc. Jpn. 110, 1048 (2002).

    Article  CAS  Google Scholar 

  74. K. Koumoto, R. Funahashi, E. Guilmeau, Y. Miyazaki, A. Weidenkaff, Y. Wang, and C. Wan: Thermoelectric ceramics for energy harvesting. J. Am. Ceram. Soc. 96(1), 1 (2013).

    Article  CAS  Google Scholar 

  75. Y. Zhou, I. Matsubara, S. Horii, T. Takeuchi, R. Funahashi, M. Shikano, J. Shimoyama, K. Kishio, W. Shin, N. Izu, and N. Murayama: Thermoelectric properties of highly grain-aligned and densified Co-based oxide ceramics. J. Appl. Phys. 93, 2653 (2003).

    Article  CAS  Google Scholar 

  76. R. Funahashi, S. Urata, T. Sano, and M. Kitawaki: Enhancement of thermoelectric figure of merit by incorporation of large single crystals in Ca3Co4O9 bulk materials. J. Mater. Res. 18, 1646 (2003).

    Article  CAS  Google Scholar 

  77. M. Prevel, E.S. Reddy, O. Perez, W. Kobayashi, I. Terasaki, C. Goupil, and J.G. Noudem: Thermoelectric properties of sintered and textured Nd-Substituted Ca3Co4O9 ceramics. JJAP 46, 97 (2007).

    Google Scholar 

  78. M. Prevel, S. Lemonnier, Y. Klein, S. Hebert, D. Chateigner, B. Ouladdiaf, and J.G. Noudem: Textured Ca3Co4O9 thermoelectric oxides by thermoforging process. J. Appl. Phys. 98, 093706 (2005).

    Article  CAS  Google Scholar 

  79. E. Guilmeau, R. Funahashi, M. Mikami, K. Chong, and D. Chateigner: Thermoelectric properties-texture relationship in highly oriented Ca3Co4O9 composited. Appl. Phys. Lett. 85, 1490 (2004).

    Article  CAS  Google Scholar 

  80. Y.H. Liu, Y.H. Lin, Z. Shi, C.W. Nan, and Z.J. Shen: Preparation of Ca3Co4O9 and improvement of its thermoelectric properties by spark plasma sintering. J. Am. Ceram. Soc. 88, 1337 (2005).

    Article  CAS  Google Scholar 

  81. H.Q. Liu, Y. Song, S.N. Zhang, X.B. Zhao, and F.R. Wang: Thermoelectric properties of Ca3−xYxCo4O9+δ ceramics. J. Phys. Chem. Solids 70, 600 (2009).

    Article  CAS  Google Scholar 

  82. J.G. Noudem, D. Kenfaui, D. Chateigner, and M. Gomina: Granular and lamellar thermoelectric oxides consolidated by spark plasma sintering. J. Electron. Mater. 40, 1100 (2011).

    Article  CAS  Google Scholar 

  83. H. Itahara, J. Sugiyama, and T. Tani: Enhancement of electrical conductivity in thermoelectric [Ca2CoO3]0.62[CoO2] ceramics by texture improvement. Jpn. J. Appl. Phys. 43, 5134 (2004).

    Article  CAS  Google Scholar 

  84. S. Lee, R.H.T. Wilke, S. Trolier-McKinstry, S. Zhang, and C.A. Randall: SrxBa1−xNb2O6−δ ferroelectric-thermoelectrics: Crystal anisotropy, conduction mechanism, and power factor. Appl. Phys. Lett. 96, 031910 (2010).

    Article  CAS  Google Scholar 

  85. S. Lee, S. Dursun, C. Duran, and C.A. Randall: Thermoelectric power factor enhancement of textured ferroelectric SrxBa1−xNb2O6−δ. J. Mater. Res. 26(1), 26 (2011).

    Article  CAS  Google Scholar 

  86. Y. Miwa, S. Kawada, M. Kimura, S. Omiya, N. Kubodera, A. Ando, T.S. Suzuki, T. Uchikoshi, and Y. Sakka: Processing and enhanced piezoelectric properties of highly oriented compositionally modified Pb(Zr,Ti)O3 ceramics fabricated by magnetic alignment. Appl. Phys. Express 8, 041501 (2015).

    Article  CAS  Google Scholar 

  87. E.M. Sabolsky, S. Trolier-McKinstry, and G.L. Messing: Dielectric and piezoelectric properties of 〈001〉 fiber-textured 0.675 Pb(Mg1/3Nb2/3)O3–0.325PbTiO3 ceramics. J. Appl. Phys. 93, 4072 (2003).

    Article  CAS  Google Scholar 

  88. T. Richter, S. Denneler, C. Schuh, E. Suvaci, and R. Moos: Textured PMN–PT and PMN–PZT. J. Am. Ceram. Soc. 91, 929 (2008).

    Article  CAS  Google Scholar 

  89. Y. Yan, Y.U. Wang, and S. Priya: Electromechanical behavior of [001]-textured Pb(Mg1/3Nb2/3)O3–PbTiO3 ceramics. Appl. Phys. Lett. 100, 192950 (2012).

    Google Scholar 

  90. K.H. Brosnan: Processing, properties, and application of textured 0.72Pb(Mg1/3Nb2/3)O3–0.28PbTiO3 ceramics. Ph.D thesis, Pennsylvania State University, 2007.

  91. H. Amorin, H. Ursic, P. Ramos, J. Holc, R. Moreno, D. Chateigner, J. Ricote, and M. Alguero: Pb(Mg1/3Nb2/3)O3–PbTiO3 textured ceramics with high piezoelectric response by a novel templated grain growth approach. J. Am. Ceram. Soc. 97, 420 (2014).

    Article  CAS  Google Scholar 

  92. S.F. Poterala, S. Trolier-McKinstry, R.J. Meyer, Jr., and G.L. Messing: Processing, texture quality, and piezoelectric properties of 〈001〉C textured (1 −x)Pb(Mg1/3Nb2/3)TiO3x PbTiO3 ceramics. J. Appl. Phys. 110, 14105 (2011).

    Article  CAS  Google Scholar 

  93. Y. Yan, L. Yang, Y. Zhou, K.H. Cho, J.S. Heo, and S. Priya: Enhanced temperature stability in 〈111〉 textured tetragonal Pb(Mg1/3Nb2/3)O3–PbTiO3 piezoelectric ceramics. J. Appl. Phys. 118, 104101 (2015).

    Article  CAS  Google Scholar 

  94. Y. Yan, J.E. Zhou, D. Maurya, Y.U. Wang, and S. Priya: Giant piezoelectric voltage coefficient in grain-oriented modified PbTiO3 material. Nat. Commun. 7, 1 (2016).

    Google Scholar 

  95. Y. Chang, J. Wu, Y. Sun, S. Zhang, X. Wang, B. Yang, G.L. Messing, and W. Cao: Enhanced electromechanical properties and phase transition temperatures in [001] textured Pb(In1/2Nb1/2)O3–Pb(Mg1/3Nb2/3)O3–PbTiO3 ternary ceramics. Appl. Phys. Lett. 107, 82902 (2015).

    Article  CAS  Google Scholar 

  96. D. Wei, Q. Yuan, G. Zhang, and H. Wang: Templated grain growth and piezoelectric properties of 〈001〉-textured PIN–PMN–PT ceramics. J. Mater. Res. 30, 2144 (2015).

    Article  CAS  Google Scholar 

  97. C. Duran, S. Dursun, and E. Akça: High strain, 〈001〉-textured Pb(Mg1/3Nb2/3)O3–Pb(Yb1/2Nb1/2)O3–PbTiO3 piezoelectric ceramics. Scr. Mater. 113, 14 (2016).

    Article  CAS  Google Scholar 

  98. Y. Yan, K. Cho, D. Maurya, A. Kumar, S. Kalinin, K. Armen, and S. Priya: Giant energy density in [001]-textured Pb(Mg1/3Nb2/3)O3–PbZrO3–PbTiO3 piezoelectric ceramics. Appl. Phys. Lett. 102, 42903 (2013).

    Article  CAS  Google Scholar 

  99. Y. Yan and S. Priya: Strong piezoelectric anisotropy d15/ d33 in 〈111〉 textured Pb(Mg1/3Nb2/3)O3–Pb(Zr,Ti)O3 ceramics. Appl. Phys. Lett. 107, 82909 (2015).

    Article  CAS  Google Scholar 

  100. S.J. Zhang, J. Luo, W. Hackenberger, N.P. Sherlock, R.J. Meyer, Jr., and T.R. Shrout: Electromechanical characterization of Pb(In1/2Nb1/2)O3–Pb(Mg1/3Nb2/3)–PbTiO3 crystals as a function of crystallographic orientation and temperature. J. Appl. Phys. 105, 104506 (2009).

    Article  CAS  Google Scholar 

  101. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, and M. Nakamura: Lead-free piezoceramics. Nature 432, 84 (2004).

    Article  CAS  Google Scholar 

  102. Z.P. Yang, Y.F. Chang, and L.L. Wei: Phase transitional behavior and electrical properties of lead-free (K0.44Na0.52Li0.04)(Nb0.96−xTaxSb0.04)O3 piezoelectric ceramics. Appl. Phys. Lett. 90, 042911 (2007).

    Article  CAS  Google Scholar 

  103. J.G. Wu and D.Q. Xiao: Compositional dependence of phase structure and electrical properties in (K0.42Na0.58)NbO3–LiSbO3 lead-free ceramics. J. Appl. Phys. 102, 114113 (2007).

    Article  CAS  Google Scholar 

  104. J. Fuentes, J. Portelles, M.D. Durruthy-Rodriguez, H. H’Mok, O. Raymond, J. Heiras, M.P. Cruz, and J.M. Siqueiros: Dielectric and piezoelectric properties of the KNN ceramic compound doped with Li, La and Sb. Appl. Phys. A 117, 709 (2015).

    Article  CAS  Google Scholar 

  105. Y.B. Wei, Z. Wu, Y.M. Jia, J. Wu, Y.C. Shen, and H.S. Luo: Dual-enhancement of ferro-/piezoelectric and photoluminescent performance in Pr3+ doped (K0.5Na0.5)NbO3 lead-free ceramics. Appl. Phys. Lett. 105, 042902 (2014).

    Article  CAS  Google Scholar 

  106. Y. Chang, S.F. Poterala, Z. Yang, S. Trolier-McKinstry, and G.L. Messing: 〈001〉 textured (K0.5Na0.5)(Nb0.97Sb0.03)O3 piezoelectric ceramics with high electromechanical coupling over a broad temperature range. Appl. Phys. Lett. 95, 232905 (2009).

    Article  CAS  Google Scholar 

  107. Y. Chang, S. Poterala, Z. Yang, and G.L. Messing: Enhanced electromechanical properties and temperature stability of textured (K0.5Na0.5)NbO3-based piezoelectric ceramics. J. Am. Ceram. Soc. 94, 2494 (2011).

    Article  CAS  Google Scholar 

  108. H. Takao, Y. Saito, Y. Aoki, and K. Horibuchi: Microstructural evolution of crystalline-oriented (K0.5Na0.5)NbO3 piezoelectric ceramics with a pintering aid of CuO. J. Am. Ceram. Soc. 89, 1951 (2006).

    Article  CAS  Google Scholar 

  109. A. Hussain, J.S. Kim, T.K. Song, M.H. Kim, W.J. Kim, and S.S. Kim: Fabrication of textured KNNT ceramics by reactive template grain growth using NN templates. Curr. Appl. Phys. 13, 1055 (2013).

    Article  Google Scholar 

  110. Y. Saito and H. Takao: Synthesis of polycrystalline platelike KNbO3 particles by the topochemical micro-crystal conversion method and fabrication of grain-oriented (K0.5Na0.5)NbO3 ceramics. J. Eur. Ceram. Soc. 27, 4085 (2007).

    Article  CAS  Google Scholar 

  111. A.B. Haugen, G. Henning, F. Madaro, M.I. Morozov, G. Tutuncu, J.L. Jones, T. Grande, and M. Einarsrud: Piezoelectric K0.5Na0.5NbO3 ceramics textured using needlelike K0.5Na0.5NbO3 templates. J. Am. Ceram. Soc. 97, 3818 (2014).

    Article  CAS  Google Scholar 

  112. Y. Li, C. Hui, M. Wu, Y. Li, and Y. Wang: Textured (K0.5Na0.5)NbO3 ceramics prepared by screen-printing multilayer grain growth technique. Ceram. Int. 38S, S283 (2012).

    Article  CAS  Google Scholar 

  113. G. Tutuncu, Y. Chang, S. Poterala, J.L. Jones, and G.L. Messing: In situ observations of template grain growth in (Na0.5K0.5)0.98Li0.02NbO3 piezoceramics: Texture development and template-matrix interactions. J. Am. Ceram. Soc. 95, 2653 (2012).

    Article  CAS  Google Scholar 

  114. F. Gao, R.Z. Hong, J.J. Li, Y.H. Yao, and C.S. Tian: Effect of different templates on microstructure of textured Na0.5Bi0.5TiO3–BaTiO3 ceramics with RTGG method. J. Eur. Ceram. Soc. 28, 2063 (2008).

    Article  CAS  Google Scholar 

  115. W. Bai, J. Hao, F. Fu, W. Li, B. Shen, and J. Zhai: Structure and strain behavior of 〈001〉 textured BNT-based ceramics by template grain growth. Mater. Lett. 97, 137 (2013).

    Article  CAS  Google Scholar 

  116. M. Deng, X. Li, Z. Zhao, T. Li, Y. Dai, and H. Ji: Crystallographic textured evolution in 0.85Na0.5Bi0.5TiO3–0.04BaTiO3–0.11K0.5Bi0.5TiO3 ceramics prepared by reactive-templated grain growth method. J. Mater. Sci. Mater. Electron. 25, 1873 (2014).

    Article  CAS  Google Scholar 

  117. F. Gao, X. Liu, C. Zhang, L. Cheng, and C. Tian: Fabrication and electrical properties of textured (Na,K)0.5Bi0.5TiO3 ceramics by reactive-templated grain growth. Ceram. Int. 34, 403 (2008).

    Article  CAS  Google Scholar 

  118. D. Hu, K. Mori, X. Kong, K. Shinagawa, S. Wada, and Q. Feng: Fabrication of [100]-oriented bismuth sodium titanate ceramics with small grain size and high density for piezoelectric materials. J. Eur. Ceram. Soc. 34, 1169 (2014).

    Article  CAS  Google Scholar 

  119. H. Zou, Y. Sui, X. Zhu, B. Liu, J. Xue, and J. Zhang: Texture development and enhanced electromechanical properties in 〈001〉-textured BNT-based materials. Mater. Lett. 184, 139 (2016).

    Article  CAS  Google Scholar 

  120. T. Shoji, Y. Yoshida, and T. Kimura: Mechanism of texture development in Bi0.5(Na,K)0.5TiO3 templated by platelike Al2O3 particles. J. Am. Ceram. Soc. 91, 3883 (2008).

    Article  CAS  Google Scholar 

  121. T. Shoji, K. Fuse, and T. Kimura: Mechanism of texture development in Bi0.5(Na,K)0.5TiO3 prepared by the templated grain growth process. J. Am. Ceram. Soc. 92, S140 (2009).

    Article  CAS  Google Scholar 

  122. X. Jing, Y. Li, Q. Yang, J. Zeng, and Q. Yin: Influence of different templates on the textured Bi0.5(Na1−xKx)0.5TiO3 piezoelectric ceramics by the reactive templated grain growth process. Ceram. Int. 30, 1889 (2004).

    Article  CAS  Google Scholar 

  123. D. Maurya, Y. Zhou, Y. Yan, and S. Priya: Synthesis mechanism of grain-oriented lead-free piezoelectric Na0.5Bi0.5TiO3–BaTiO3 ceramics with giant piezoelectric response. J. Mater. Chem. C 1, 2102 (2013).

    Article  CAS  Google Scholar 

  124. D. Maurya, Y. Zhou, Y. Wang, Y.K. Yan, J.F. Li, D. Viehland, and S. Priya: Giant strain with ultra-low hysteresis and high temperature stability in grain oriented lead-free K0.5Bi0.5TiO3–BaTiO3–Na0.5Bi0.5TiO3 piezoelectric materials. Sci. Rep. 5, 8595 (2014).

    Article  CAS  Google Scholar 

  125. H. Zhang, P. Xu, E. Patterson, J. Zang, S. Jiang, and J. Rödel: Preparation and enhanced electrical properties of grain-oriented (Bi1/2Na1/2)TiO3-based lead-free incipient piezoceramics. J. Eur. Ceram. Soc. 35, 2501 (2015).

    Article  CAS  Google Scholar 

  126. S. Ma, Y. Zhang, Z. Liu, X. Dai, and J. Huang: Preparation and enhanced electric-field-induced strain of textured 91BNT–6BT–3KNN lead-free piezoceramics by TGG method. J. Mater. Sci. Mater. Electron. 27, 3076 (2016).

    Article  CAS  Google Scholar 

  127. D. Vriami, D. Damjanovic, J. Vleugels, and O. Van Der Biest: Textured BaTiO3 by templated grain growth and electrophoretic deposition. J. Mater. Sci. 50, 7896 (2015).

    Article  CAS  Google Scholar 

  128. F. Fu, B. Shen, Z. Xu, and J. Zhai: Electric properties of BaTiO3 lead-free textured piezoelectric thick film by screen printing method. J. Electroceram. 33, 208 (2014).

    Article  CAS  Google Scholar 

  129. S. Wada, K. Takeda, T. Muraishi, H. Kakemoto, T. Tsurumi, and T. Kimura: Preparation of [110] grain oriented barium titanate ceramics by templated grain growth method and their piezoelectric properties. Jpn. J. Appl. Phys. 46, 739 (2007).

    Article  CAS  Google Scholar 

  130. A.N. Kamlo, P.M. Geffroy, M. Pham-Thi, and P. Marchet: +111−-Textured BaTiO3 ceramics elaborated by templated grain growth using NaNbO3 templates. Mater. Lett. 113, 149 (2013).

    Article  CAS  Google Scholar 

  131. W. Liu and X. Ren: Large piezoelectric effect in Pb-free ceramics. Phys. Rev. Lett. 103, 257602 (2009).

    Article  CAS  Google Scholar 

  132. T. Sato and T. Kimura: Preparation of 〈111〉 textured BaTiO3 ceramics by templated grain growth method using novel template particles. Ceram. Int. 34, 757 (2008).

    Article  CAS  Google Scholar 

  133. S.K. Ye, J.Y.H. Fuh, and L. Lu: Structure and electrical properties of 〈001〉 textured (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 lead-free piezoelectric ceramics. Appl. Phys. Lett. 100, 252906 (2012).

    Article  CAS  Google Scholar 

  134. E.M. Sabolsky, L. Maldonado, M.M. Seabaugh, and S.L. Swartz: Textured-Ba(Zr,Ti)O3 piezoelectric ceramics fabricated by templated grain growth (TGG). J. Electroceram. 25, 77 (2010).

    Article  CAS  Google Scholar 

  135. W. Bai, D. Chen, P. Li, B. Shen, J. Zhai, and Z. Ji: Enhanced electromechanical properties in 〈001〉-textured (Ba0.85Ca0.15) (Zr0.1Ti0.9)O3 lead-free piezoceramics. Ceram. Int. 42, 3429 (2016).

    Article  CAS  Google Scholar 

  136. S. Zhukov, Y.A. Genenko, J. Koruza, J. Schultheiß, H.v. Seggern, W. Sakamoto, H. Ichikawa, T. Murata, K. Hayashi, and T. Yogo: Effect of texturing on polarization switching dynamics in ferroelectric ceramics. Appl. Phys. Lett. 108, 012907 (2016).

    Article  CAS  Google Scholar 

  137. J. Schultheiß, O. Clemens, S. Zhukov, H.v. Seggern, W. Sakamoto, and J. Koruza: Effect of degree of crystallographic texture on ferro- and piezoelectric properties of Ba0.85Ca0.15TiO3 piezoceramics. J. Am. Ceram. Soc. (2017). doi: https://doi.org/10.1111/jace.14749.

    Google Scholar 

  138. S. Ye, J. Fuh, L. Lu, Y-I. Chang, and J-R. Yang: Structure and properties of hot-pressed lead-free (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 piezoelectric ceramics. RSC Adv. 3, 20693 (2013).

    Article  CAS  Google Scholar 

  139. S. Endo, H. Nagata, and T. Takenaka: Fabrication and high power piezoelectric characteristics of textured (Sr0.7Ca0.3)2Bi4Ti5O18. Jpn. J. Appl. Phys. 53, 3 (2014).

    Article  CAS  Google Scholar 

  140. H. Zhang, H. Yan, X. Zhang, M.J. Reece, J. Liu, Z. Shen, Y. Kan, and P. Wang: The effect of texture on the properties of Bi3.15Nd0.85Ti3O12 ceramics prepared by spark plasma sintering. Mater. Sci. Eng., A 475, 92 (2008).

    Article  CAS  Google Scholar 

  141. T. Kimura, Y. Sakuma, and M. Murata: Texture development in piezoelectric ceramics by templated grain growth using heterotemplates. J. Eur. Ceram. Soc. 25, 2227 (2005).

    Article  CAS  Google Scholar 

  142. M. Kimura, H. Ogawa, T. Sawada, K. Shiratsuyu, N. Wada, and A. Ando: Piezoelectric properties in textured ceramics of bismuth layer-structured ferroelectrics. J. Electroceram. 21, 55 (2008).

    Article  CAS  Google Scholar 

  143. H. Chen, B. Shen, J. Xu, and J. Zhai: Textured Ca0.85(Li,Ce)0.15Bi4Ti4O15 ceramics for high temperature piezoelectric applications. Mater. Res. Bull. 47, 2530 (2012).

    Article  CAS  Google Scholar 

  144. H. Chen and J. Zhai: Enhanced piezoelectric properties of CaBi2Nb2O9 with Eu modification and templated grain growth. Key Eng. Mater. 515, 1367 (2012).

    Article  CAS  Google Scholar 

  145. H. Hao, H. Liu, and S. Ouyang: Processing and property of textured lead-free SrTi4Bi4O15 piezoelectric ceramics. J. Electroceram. 21, 255 (2008).

    Article  CAS  Google Scholar 

  146. T. Li, X. Li, Z. Zhao, H. Ji, and Y. Dai: Structures and electrical properties of textured Ca0.85(LiCe)0.075Bi4Ti4O15 ceramics prepared by the reactive templated grain growth. Integr. Ferroelectr. 162, 1 (2015).

    Article  CAS  Google Scholar 

  147. J. Liu, Z. Shen, M. Nygren, Y. Kan, and P. Wang: SPS processing of bismuth-layer structured ferroelectric ceramics yielding highly textured microstructures. J. Eur. Ceram. Soc. 26, 3233 (2006).

    Article  CAS  Google Scholar 

  148. Q.X. Bao, L.H. Zhu, Q.W. Huang, and J. Xv: Preparation of textured Ba2NaNb5O15 ceramics by templated grain growth. Ceram. Int. 32(7), 745 (2006).

    Article  CAS  Google Scholar 

  149. S. Dursun, E. Mensur-Alkoy, and S. Alkoy: Fabrication of textured lead-free strontium barium niobate (SBN61) bulk ceramics and their electrical properties. J. Eur. Ceram. Soc. 36, 2479 (2016).

    Article  CAS  Google Scholar 

  150. Y. Chang, S. Lee, S. Poterala, C.A. Randall, and G.L. Messing: A critical evaluation of reactive templated grain growth (RTGG) mechanisms in highly [001] textured Sr0.61Ba0.39Nb2O6 ferroelectric-thermoelectrics. J. Mater. Res. 26(24), 3044 (2011).

    Article  CAS  Google Scholar 

  151. L. Wei, X. Chao, X. Han, and Z. Yang: Structure and electrical properties of textured Sr1.85Ca0.15NaNb5O15 ceramics prepared by reactive templated grain growth. Mater. Res. Bull. 52, 65 (2014).

    Article  CAS  Google Scholar 

  152. L. Liu and Z. Hou: Fabrication of grain-oriented KSr2Nb5O15 ceramics by a brush technique. Mater. Lett. 186, 105 (2017).

    Article  CAS  Google Scholar 

  153. S. Alkoy and S. Dursun: Processing and properties of textured potassium strontium niobate (KSr2Nb5O15) ceramic fibers—Texture development. J. Am. Ceram. Soc. 95(3), 937 (2012).

    CAS  Google Scholar 

  154. S. Alkoy and S. Dursun: Processing and properties of textured potassium strontium niobate (KSr2Nb5O15) ceramic fibers-effect of texture on the electrical properties. IEEE Trans. Ultrason., Ferroelectr., Freq. Control 60, 2044 (2013).

    Article  Google Scholar 

  155. S. Tanaka, T. Takahashi, and R. Furushima: Fabrication of c-axis-oriented potassium strontium niobate (KSr2Nb5O15) ceramics by a rotating magnetic field and electrical property. J. Ceram. Soc. Japan 118, 722 (2010).

    Article  CAS  Google Scholar 

  156. R. Apetz and M.P.B. van Bruggen: Transparent alumina: A light-scattering model. J. Am. Ceram. Soc. 86, 480 (2003).

    Article  CAS  Google Scholar 

  157. P. Liu, H. Yi, G. Zhou, J. Zhang, and S. Wang: HIP and pressureless sintering of transparent alumina shaped by magnetic field assisted slip casting. Opt. Mater. Exp. 5, 441 (2015).

    Article  CAS  Google Scholar 

  158. A. Pringuet, T. Takahashi, S. Baba, Y. Kamo, Z. Kato, K. Uematsu, and S. Tanaka: Fabrication of transparent grain-oriented polycrystalline alumina by colloidal processing. J. Am. Ceram. Soc. 99, 3217 (2016).

    Article  CAS  Google Scholar 

  159. S. Tanaka, T. Takahashi, and K. Uematsu: Fabrication of transparent crystal-oriented polycrystalline strontium barium niobate ceramics for electro-optical application. J. Eur. Ceram. Soc. 34, 3723 (2014).

    Article  CAS  Google Scholar 

  160. J. Akiyama, Y. Sato, and T. Taira: Laser demonstration of diode-pumped Nd3+-doped fluorapatite anisotropic ceramics. Appl. Phys. Exp. 4, 002703 (2011).

    Article  CAS  Google Scholar 

  161. Y. Sato, J. Akiyama, and T. Taira: Micro-domain controlled anisotropic laser ceramics assisted by rare-earth trivalent, in Pacific Rim Laser Damage 2011: Optical Materials for High Power Lasers, edited by J. Shao, K. Sugioka, and C.J. Stolz (Proc. of SPIE 8206, Bellingham, WA, 2012) p. 82061T-1.

  162. Y. Sato, M. Arzakantsyan, J. Akiyama, and T. Taira: Anisotropic Yb:FAP laser ceramics by micro-domain control. Opt. Mater. Exp. 4, 214969 (2006).

    Google Scholar 

  163. I. Shoji, Y. Sato, S. Kurimura, V. Lupei, T. Taira, A. Ikesue, and K. Yoshida: Thermal-birefringence-induced depolarization in Nd:YAG ceramics. Opt. Lett. 27, 234 (2002).

    Article  CAS  Google Scholar 

  164. I. Shoji and T. Taira: Intrinsic reduction of the depolarization loss in solid-state lasers by use of a (110)-cut Y3Al5O12 crystal. Appl. Phys. Lett. 80, 3048 (2002).

    Article  CAS  Google Scholar 

  165. S. Arakawa, H. Kadoura, T. Uyama, K. Takatori, Y. Takeda, and T. Tani: Formation of preferentially oriented Y3Al5O12 film on a reactive sapphire substrate: Phase and texture transitions from Y2O3. J. Eur. Ceram. Soc. 36, 663 (2016).

    Article  CAS  Google Scholar 

  166. K. Watari: High thermal conductivity non-oxide ceramics. J. Ceram. Soc. Jpn. 109, S7 (2001).

    Article  CAS  Google Scholar 

  167. N. Hirosaki, S. Ogata, C. Kocer, H. Kitagawa, and Y. Nakamura: Molecular dynamics calculation of the ideal thermal conductivity of single-crystal. Phys. Rev. B: Condens. Matter Mater. Phys. 65, 134110 (2002).

    Article  CAS  Google Scholar 

  168. T.S. Suzuki and Y. Sakka: Preparation of oriented bulk 5 wt% Y2O3–AlN ceramics by slip casting in a high magnetic field and sintering. Scr. Mater. 52, 583 (2005).

    Article  CAS  Google Scholar 

  169. T.S. Suzuki, T. Uchikoshi, and Y. Sakka: Effect of sintering additive on crystallographic orientation in AlN prepared by slip casting in a strong magnetic field. J. Eur. Ceram. Soc. 29, 2627 (2009).

    Article  CAS  Google Scholar 

  170. B. Li, L. Pottier, J.P. Roger, D. Fournier, K. Watari, and K. Hirao: Measuring the anisotropic thermal diffusivity of silicon nitride grains by thermoreflectance microscopy. J. Eur. Ceram. Soc. 19, 1631 (1999).

    Article  CAS  Google Scholar 

  171. X. Zhu, T.S. Suzuki, T. Uchikoshi, and Y. Sakka: Texturing behavior in sintered reaction-bonded silicon nitride via strong magnetic field alignment. J. Eur. Ceram. Soc. 28, 929 (2008).

    Article  CAS  Google Scholar 

  172. X.W. Zhu, Y. Sakka, Y. Zhou, K. Hirao, and K. Itatani: A strategy for fabricating textured silicon nitride with enhanced thermal conductivity. J. Eur. Ceram. Soc. 34, 2585 (2014).

    Article  CAS  Google Scholar 

  173. K. Hirao, K. Watari, M.E. Brito, M. Toriyama, and S. Kanzaki: High thermal conductivity in silicon nitride with anisotropic microstructure. J. Am. Ceram. Soc. 79, 2485 (1996).

    Article  CAS  Google Scholar 

  174. Y. Akimune, F. Munakata, K. Matsuo, N. Hirosaki, Y. Okamoto, and K. Misono: Raman spectroscopy analysis of structural defects in hot isostatically pressed silicon nitride. J. Ceram. Soc. Jpn. 107, 339 (1999).

    Article  CAS  Google Scholar 

  175. McColm: Ceramic Hardness, 1st ed. (Plenum Press, New York, 1990).

    Book  Google Scholar 

  176. T. Carisey, I. Levin, and D.G. Brandon: Microstructure and mechanical properties of textured Al2O3. J. Eur. Ceram. Soc. 15, 283 (1995).

    Article  Google Scholar 

  177. S. Lee, Y. Lee, Y. Kim, R. Xie, M. Mitomo, and G. Zhan: Mechanical properties of hot-forged silicon carbide ceramics. Scr. Mater. 52, 153 (2005).

    Article  CAS  Google Scholar 

  178. V.R. Vedula, S.J. Glass, D.M. Saylor, G.S. Rohrer, W.C. Carter, S.A. Langer, and E.R. Fuller, Jr.: Residual stress predictions in polycrystalline alumina. J. Am. Ceram. Soc. 84, 2947 (2001).

    Article  CAS  Google Scholar 

  179. J.A. Salem, J.L. Shannon, and R.C. Bradt: The effect of texture on the crack growth resistance of alumina. Presented at the 89th Annual Meeting of the American Ceramic Society (1987). Available at: https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19880004824.pdf (accessed 20 December 2016).

  180. L. Zhang, J. Vleugels, L. Darchuk, and O. Van der Biest: Magnetic field oriented tetragonal zirconia with anisotropic toughness. J. Eur. Ceram. Soc. 31, 1405 (2011).

    Article  CAS  Google Scholar 

  181. R. Pavlacka, R. Bermejo, Y. Chang, D.J. Green, and G.L. Messing: Fracture behavior of layered alumina microstructural composites with highly textured layers. J. Am. Ceram. Soc. 96, 1577 (2013).

    Article  CAS  Google Scholar 

  182. Y. Chang, R. Bermejo, and G.L. Messing: Improved fracture behavior of alumina microstructural composites with highly textured compressive layers. J. Am. Ceram. Soc. 97, 3643 (2014).

    Article  CAS  Google Scholar 

  183. M-Y. He and J.W. Hutchinson: Crack deflection at an interface between dissimilar elastic materials. Int. J. Solids Struct. 25, 1053 (1989).

    Article  Google Scholar 

  184. M. Nakamura, K. Hirao, Y. Yamauchi, and S. Kanzaki: Tribological properties of unidirectionally aligned silicon nitride. J. Am. Ceram. Soc. 84, 2579 (2001).

    Article  CAS  Google Scholar 

  185. W. Wu, Y. Sakka, and T.S. Suzuki: Microstructure and anisotropic properties of textured ZrB2 and ZrB2–MoSi2 ceramics prepared by strong magnetic field alignment. Int. J. Appl. Ceram. Technol. 11, 218 (2014).

    Article  CAS  Google Scholar 

  186. X. Zhu and Y. Sakka: Textured silicon nitride: Processing and anisotropic properties. Sci. Technol. Adv. Mater. 9, 1 (2008).

    Article  CAS  Google Scholar 

  187. R. Pavlacka and G. Messing: Processing and mechanical response of highly textured Al2O3. J. Eur. Ceram. Soc. 30, 2917 (2010).

    Article  CAS  Google Scholar 

  188. Z.M. Sun: Progress in research and development on MAX phases: A family of layered ternary compounds. Int. Mater. Rev. 56, 143 (2011).

    Article  CAS  Google Scholar 

  189. M. Shamma, E.N. Caspi, B. Anasori, B. Clausen, D.W. Brown, S.C. Vogel, V. Presser, S. Amini, O. Yeheskel, and M.W. Barsoum: In situ neutron diffraction evidence for fully reversible dislocation motion in highly textured polycrystalline Ti2AlC samples. Acta Mater. 98, 51 (2015).

    Article  CAS  Google Scholar 

  190. C. Hu, Y. Sakka, H. Tanaka, T. Nishimura, and S. Grasso: Fabrication of textured Nb4AlC3 ceramic by slip casting in a strong magnetic field and spark plasma sintering. J. Am. Ceram. Soc. 94, 410 (2011).

    Article  CAS  Google Scholar 

  191. C. Hu, Y. Sakka, T. Nishimura, S. Guo, S. Grasso, and H. Tanaka: Physical and mechanical properties of highly textured polycrystalline Nb4AlC3 ceramic. Sci. Technol. Adv. Mater. 12, 044603 (2011).

    Article  CAS  Google Scholar 

  192. C. Hu, Y. Sakka, S. Grasso, T. Nishimura, S. Guo, and H. Tanaka: Shell-like nanolayered Nb4AlC3 ceramic with high strength and toughness. Scr. Mater. 64, 765 (2011).

    Article  CAS  Google Scholar 

  193. C. Hu, Y. Sakka, S. Grasso, T. Suzuki, and H. Tanaka: Tailoring Ti3SiC2 ceramic via a strong magnetic field alignment method followed by spark plasma sintering. J. Am. Ceram. Soc. 94, 742 (2011).

    Article  CAS  Google Scholar 

  194. K. Sato, M. Mishra, H. Hirano, T.S. Suzuki, and Y. Sakka: Fabrication of textured Ti3SiC2 ceramic by slip casting in a strong magnetic field and pressureless sintering. J. Ceram. Soc. Jpn. 122, 817 (2014).

    Article  CAS  Google Scholar 

  195. H.B. Zhang, C.F. Hu, K. Sato, S. Grasso, M. Estili, S.Q. Guo, K. Morita, H. Yoshida, T. Nishimura, T.S. Suzuki, M.W. Barsoum, B.N. Kim, and Y. Sakka: Tailoring Ti3AlC2 ceramic with high anisotropic physical and mechanical properties. J. Eur. Ceram. Soc. 393, 35 (2015).

    Google Scholar 

  196. M. Mishra, Y. Sakka, C. Hu, T.S. Suzuki, T. Uchikoshi, and L. Besra: Textured Ti3SiC2 by EPD in a strong magnetic field. Key Eng. Mater. 507, 15 (2012).

    Article  CAS  Google Scholar 

  197. Y. Mizuno, K. Sato, M. Mrinalini, T.S. Suzuki, and Y. Sakka: Fabrication of textured Ti3AlC2 by spark plasma sintering and their anisotropic mechanical properties. J. Ceram. Soc. Jpn. 121, 366 (2013).

    Article  CAS  Google Scholar 

  198. T. Lapauw, K. Vanmeensel, K. Lambrinou, and J. Vleugels: A new method to texture dense Mn+1AXn ceramics by spark plasma deformation. Scr. Mater. 111, 98 (2016).

    Article  CAS  Google Scholar 

  199. V.I. Aleshin, I.P. Raevskii, and E.I. Sitalo: Electromechanical properties of a textured ceramic material in the (1 −x)PMN–x PT system: Simulation based on the effective-medium method. Phys. Solid State 50, 2150 (2008).

    Article  CAS  Google Scholar 

  200. M. Pham-Thi, H. Hemery, and H. Dammak: X-ray investigation of highly oriented (1 −x)PbMg1/3Nb2/3O3–(x)PbTiO3 ceramics. J. Eur. Ceram. Soc. 25, 2433 (2005).

    Article  CAS  Google Scholar 

  201. S.F. Poterala, R.J. Meyer, and G.L. Messing: Low-field dynamic magnetic alignment and templated grain growth of diamagnetic PMN–PT ceramics. J. Mater. Res. 28, 2961 (2013).

    Article  CAS  Google Scholar 

  202. J.L. Jones, E.B. Slamovich, and K.J. Bowman: Critical evaluation of the Lotgering degree of orientation texture indicator. J. Mater. Res. 19, 3414 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary L. Messing.

Additional information

This author was Editor in Chief during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/editor-manuscripts/.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Messing, G.L., Poterala, S., Chang, Y. et al. Texture-engineered ceramics—Property enhancements through crystallographic tailoring. Journal of Materials Research 32, 3219–3241 (2017). https://doi.org/10.1557/jmr.2017.207

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.207

Navigation