Skip to main content
Log in

Mechanical properties of β″ precipitates containing Al and/or Cu in age hardening Al alloys

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Evidences show that the composition of β″ formed in age hardening of Al alloys should be the prototype Mg5Si6 with Al and/or Cu addition. In the present work, molecular dynamics simulations are carried out to investigate the influence of the addition of Al and/or Cu to the mechanical properties of the prototype Mg5Si6. Our simulations imply that Mg5Si6 with both Al and Cu addition has relatively poor mechanical performance when compared with other three models. The snapshots of atomic configurations during uniaxial tension test illustrate that only if both Al and Cu dissolve in β″, clusters can form through Al atoms segregating around Cu atoms, thus applying different stress fields on the Al matrix, resulting different mechanical properties in comparison with other three β″ models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9

Similar content being viewed by others

References

  1. C.D. Marioara, S.J. Andersen, H.W. Zandbergen, and R. Holmestad: The influence of alloy composition on precipitates of the Al–Mg–Si system. Metall. Mater. Trans. A 36 (3), 691 (2005).

    Article  Google Scholar 

  2. S.J. Andersen, C.D. Marioara, A. Frøseth, R. Vissers, and H.W. Zandbergen: Crystal structure of the orthorhombic U2-Al4Mg4Si4 precipitate in the Al–Mg–Si alloy system and its relation to the β′ and β″ phases. Mater. Sci. Eng., A 390 (1–2), 127 (2005).

    Article  Google Scholar 

  3. M. Daoudi, A. Triki, and A. Redjaimia: DSC study of the kinetic parameters of the metastable phases formation during non-isothermal annealing of an Al–Si–Mg alloy. J. Therm. Anal. Calorim. 104 (2), 627 (2011).

    Article  CAS  Google Scholar 

  4. R. Holmestad, R. Bjørge, F.J.H. Ehlers, M. Torsæter, C.D. Marioara, and S.J. Andersen: Characterization and structure of precipitates in 6xxx aluminium alloys. J. Phys.: Conf. Ser. 371, 012082 (2012).

    Google Scholar 

  5. M. Torsæter, W. Lefebvre, C.D. Marioara, S.J. Andersen, J.C. Walmsley, and R. Holmestad: Study of intergrown L and Q′ precipitates in Al–Mg–Si–Cu alloys. Scr. Mater. 64 (9), 817 (2011).

    Article  Google Scholar 

  6. C.D. Marioara, S.J. Andersen, T.N. Stene, H. Hasting, J. Walmsley, A.T.J. Van Helvoort, and R. Holmestad: The effect of Cu on precipitation in Al–Mg–Si alloys. Philos. Mag. 87 (23), 3385 (2007).

    Article  CAS  Google Scholar 

  7. S.K. Panigrahi and R. Jayaganthan: Effect of annealing on precipitation, microstructural stability, and mechanical properties of cryorolled Al 6063 alloy. J. Mater. Sci. 45 (20), 5624 (2010).

    Article  CAS  Google Scholar 

  8. G. Sha, H. Möller, W.E. Stumpf, J.H. Xia, G. Govender, and S.P. Ringer: Solute nanostructures and their strengthening effects in Al–7Si–0.6Mg alloy F357. Acta Mater. 60 (2), 692 (2012).

    Article  CAS  Google Scholar 

  9. F.J.H. Ehlers, S. Wenner, S.J. Andersen, C.D. Marioara, W. Lefebvre, C.B. Boothroyd, and R. Holmestad: Phase stabilization principle and precipitate-host lattice influences for Al–Mg–Si–Cu alloy precipitates. J. Mater. Sci. 49 (18), 6413 (2014).

    Article  CAS  Google Scholar 

  10. S.J. Andersen, H.W. Zandbergen, J. Jansen, C. TrÆholt, U. Tundal, and O. Reiso: The crystal structure of the β″ phase in Al–Mg–Si alloys. Acta Mater. 46 (9), 3283 (1998).

    Article  CAS  Google Scholar 

  11. H.W. Zandbergen, S.J. Andersen, and J. Jansen: Structure determination of Mg5Si6 particles in Al by dynamic electron diffraction studies. Science 277, 1221 (1997).

    Article  CAS  Google Scholar 

  12. F.J.H. Ehlers: Ab initio interface configuration determination for β″ in Al–Mg–Si: Beyond the constraint of a preserved precipitate stoichiometry. Comput. Mater. Sci. 81, 617 (2014).

    Article  CAS  Google Scholar 

  13. K. Li, A. Béché, M. Song, G. Sha, X. Lu, K. Zhang, Y. Du, S.P. Ringer, and D. Schryvers: Atomistic structure of Cu-containing β″ precipitates in an al–Mg–Si–Cu alloy. Scr. Mater. 75, 86 (2014).

    Article  Google Scholar 

  14. L. Yuan, D. Shan, and B. Guo: Molecular dynamics simulation of tensile deformation of nano-single crystal aluminum. J. Mater. Process. Technol. 184 (1–3), 1 (2007).

    Article  CAS  Google Scholar 

  15. J. Luo, K. Dahmen, P.K. Liaw, and Y. Shi: Low-cycle fatigue of metallic glass nanowires. Acta Mater. 87, 225 (2015).

    Article  CAS  Google Scholar 

  16. J. Luo and Y. Shi: Tensile fracture of metallic glasses via shear band cavitation. Acta Mater. 82, 483 (2015).

    Article  CAS  Google Scholar 

  17. L. Ju: AtomEye: An efficient atomistic configuration viewer. Modell. Simul. Mater. Sci. Eng. 11 (2), 173 (2003).

    Article  Google Scholar 

  18. L. Wang and H. Liu: The microstructural evolution of Al12Mg17 alloy during the quenching processes. J. Non-Cryst. Solids 352 (26–27), 2880 (2006).

    Article  CAS  Google Scholar 

  19. B. Jelinek, S. Groh, M.F. Horstemeyer, J. Houze, S.G. Kim, G.J. Wagner, A. Moitra, and M.I. Baskes: Modified embedded atom method potential for Al, Si, Mg, Cu, and Fe alloys. Phys. Rev. B: Condens. Matter Mater. Phys. 85 (24), 245102–1 (2012).

    Article  Google Scholar 

  20. D. Pilipenko, Y. Natanzon, and H. Emmerich: Influence of temperature dependence of bulk modulus on crack propagation velocity. J. Ceram. Sci. Technol. 05, 77 (2014).

    Google Scholar 

  21. S. Plimpton: Fast parallel algorithms for short-range molecular dyanmics. J. Comput. Phys. 117, 1 (1995).

    Article  CAS  Google Scholar 

  22. H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, A. DiNola, and J.R. Haak: Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81 (8), 3684 (1984).

    Article  CAS  Google Scholar 

  23. Y. Kong, L. Shen, G. Proust, and G. Ranzi: Al–Pd interatomic potential and its application to nanoscale multilayer thin films. Mater. Sci. Eng., A 530, 73 (2011).

    Article  CAS  Google Scholar 

  24. T. Vodenitcharova, Y. Kong, L. Shen, P. Dayal, and M. Hoffman: Nano/micro mechanics study of nanoindentation on thin Al/Pd films. J. Mater. Res. 30 (05), 699 (2015).

    Article  CAS  Google Scholar 

  25. W. Martienssen and H. Warlimont (eds.): Springer Handbook of Condensed Matter and Materials Data (Springer, Berlin, 2005).

    Google Scholar 

  26. G. Kresse and J. Furthmuller: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B: Condens. Matter Mater. Phys. 54, 16 (1996).

    Article  Google Scholar 

  27. A. Stukowski: Visualization and analysis of atomistic simulation data with OVITO—The open visualization tool. Modell. Simul. Mater. Sci. Eng. 18 (1), 015012 (2010).

    Article  Google Scholar 

  28. B. Zhang, L. Wu, B. Wan, J. Zhang, Z. Li, and H. Gou: Structural evolution, mechanical properties, and electronic structure of Al–Mg–Si compounds from first principles. J. Mater. Sci. 50 (19), 6498 (2015).

    Article  CAS  Google Scholar 

  29. C. Ravi: First-principles study of crystal structure and stability of Al–Mg–Si–(Cu) precipitates. Acta Mater. 52 (14), 4213 (2004).

    Article  CAS  Google Scholar 

  30. S.J. Andersen, C.D. Marioara, R. Vissers, A. Frøseth, and H.W. Zandbergen: The structural relation between precipitates in Al–Mg–Si alloys, the Al-matrix and diamond silicon, with emphasis on the trigonal phase U1-MgAl2Si2. Mater. Sci. Eng., A 444 (1–2), 157 (2007).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The financial supports from the project of Innovation-driven plan in Central South University (Grant No. 2015CX004) and National Natural Science Foundation of China (Grant No. 51531009) are greatly acknowledged. Part of the first-principles calculations were carried out on the High Performance Computing Center of Central South University, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Kong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, Y., Kong, Y., Xiao, S. et al. Mechanical properties of β″ precipitates containing Al and/or Cu in age hardening Al alloys. Journal of Materials Research 31, 580–588 (2016). https://doi.org/10.1557/jmr.2016.63

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.63

Navigation