Skip to main content

Advertisement

Log in

Computational analysis of chemomechanical behaviors of composite electrodes in Li-ion batteries

  • Invited Feature Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Mechanical reliability is a critical issue in all forms of energy conversion, storage, and harvesting. In Li-ion batteries, mechanical degradation caused by the repetitive swelling and shrinking of electrodes upon lithiation cycles is now well recognized; however, the impact of mechanical stresses on Li transport and hence the capacity of batteries is less obvious and underestimated. In particular, the stress field within the heterogeneous electrodes is complex, making the characterization of the chemomechanical behaviors of electrodes a challenging task. We develop a finite element program that computes the coupled Li diffusion and stresses in three-dimensional composite electrodes. We employ the reconstructed models of both cathode and anode materials to investigate the mechanical interactions of the constituents and their influence on the accessible capacity. The state of charge in the percolated particles is highly inhomogeneous regulated by the stress field. An ample space of design is open for the optimization of the capacity and mechanical performance of electrodes by tuning the size, shape, and pattern of active particles, as well as the properties of the inactive matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9

Similar content being viewed by others

References

  1. M. Armand and J.M. Tarascon: Building better batteries. Nature 451, 652 (2008).

    Article  CAS  Google Scholar 

  2. M.S. Whittingham: Materials challenges facing electrical energy storage. MRS Bull. 33, 411 (2008).

    Article  CAS  Google Scholar 

  3. J.M. Tarascon and M. Armand: Issues and challenges facing rechargeable lithium batteries. Nature 414, 359 (2001).

    Article  CAS  Google Scholar 

  4. B. Scrosati and J. Garche: Lithium batteries: Status, prospects and future. J. Power Sources 195, 2419 (2010).

    Article  CAS  Google Scholar 

  5. N. Nitta, F. Wu, J.T. Lee, and G. Yushin: Li-ion battery materials: Present and future. Mater. Today 18, 252 (2015).

    Article  CAS  Google Scholar 

  6. A. Mukhopadhyay and B.W. Sheldon: Deformation and stress in electrode materials for Li-ion batteries. Prog. Mater. Sci. 63, 58 (2014).

    Article  CAS  Google Scholar 

  7. M.T. McDowell, S. Xia, and T. Zhu: The mechanics of large-volume-change transformations in high-capacity battery materials. Extreme Mech. Lett. (2016). doi: https://doi.org/10.1016/j.eml.2016.03.004.

  8. J. Christensen and J. Newman: A mathematical model of stress generation and fracture in lithium manganese oxide. J. Electrochem. Soc. 153, A1019 (2006).

    Article  CAS  Google Scholar 

  9. M.M. Thackeray: Structural considerations of layered and spinel lithiated oxides for lithium ion batteries. J. Electrochem. Soc. 142, 2558 (1995).

    Article  CAS  Google Scholar 

  10. V. Malavé, J.R. Berger, H. Zhu, and R.J. Kee: A computational model of the mechanical behavior within reconstructed LixCoO2 Li-ion battery cathode particles. Electrochim. Acta 130, 707 (2014).

    Article  CAS  Google Scholar 

  11. K. Zaghib, C.M. Julien, and J. Prakash: Proceedings of the International Symposium: New trends in intercalation compounds for energy storage and conversion (The Electrochemical Society, Pennington, 2003).

    Google Scholar 

  12. I.A. Courtney and J.R. Dahn: Electrochemical and in situ x-ray diffraction studies of the reaction of lithium with tin oxide composites. J. Electrochem. Soc. 144, 2045 (1997).

    Article  CAS  Google Scholar 

  13. K. Zhao, M. Pharr, J.J. Vlassak, and Z. Suo: Fracture of electrodes in lithium-ion batteries caused by fast charging. J. Appl. Phys. 108, 073517 (2010).

    Article  CAS  Google Scholar 

  14. X.H. Liu, L. Zhong, S. Huang, S.X. Mao, T. Zhu, and J.Y. Huang: Size-dependent fracture of silicon nanoparticles during lithiation. ACS Nano 6, 1522 (2012).

    Article  CAS  Google Scholar 

  15. J.W. Choi, Y. Cui, and W.D. Nix: Size-dependent fracture of Si nanowire battery anodes. J. Mech. Phys. Solids 59, 1717 (2011).

    Article  CAS  Google Scholar 

  16. K. Zhao, M. Pharr, L. Hartle, J.J. Vlassak, and Z. Suo: Fracture and debonding in lithium-ion batteries with electrodes of hollow core–shell nanostructures. J. Power Sources 218, 6 (2012).

    Article  CAS  Google Scholar 

  17. S.W. Lee, H.W. Lee, W.D. Nix, H. Gao, and Y. Cui: Kinetics and fracture resistance of lithiated silicon nanostructure pairs controlled by their mechanical interaction. Nat. Commun. 6, 7533 (2015).

    Article  CAS  Google Scholar 

  18. K. Zhao, W.L. Wang, J. Gregoire, M. Pharr, and Z. Suo: Lithium-assisted plastic deformation of silicon electrodes in lithium-ion batteries: A first-principles theoretical study. Nano Lett. 11, 2962 (2011).

    Article  CAS  Google Scholar 

  19. K. Zhao, G.A. Tritsaris, M. Pharr, W.L. Wang, O. Okeke, Z. Suo, J.J. Vlassak, and E. Kaxiras: Reactive flow in silicon electrodes assisted by the insertion of lithium. Nano Lett. 12, 4397 (2012).

    Article  CAS  Google Scholar 

  20. L. Brassart and Z. Suo: Reactive flow in solids. J. Mech. Phys. Solids 61, 61 (2013).

    Article  CAS  Google Scholar 

  21. J.W. Choi, J. McDonough, S. Jeong, J.S. Yoo, C.K. Chan, and Y. Cui: Stepwise nanopore evolution in one-dimensional nanostructures. Nano Lett. 10, 1409 (2010).

    Article  CAS  Google Scholar 

  22. X.H. Liu, S. Huang, S.T. Picraux, J. Li, T. Zhu, and J.Y. Huang: Reversible nanopore formation in Ge nanowires during lithiation–delithiation cycling: An in situ transmission electron microscopy study. Nano Lett. 11, 3991 (2011).

    Article  CAS  Google Scholar 

  23. K. Zhao, M. Pharr, Q. Wan, W.L. Wang, E. Kaxiras, J.J. Vlassak, and Z. Suo: Concurrent reaction and plasticity during initial lithiation of crystalline silicon in lithium-ion batteries. J. Electrochem. Soc. 159, A238 (2012).

    Article  CAS  Google Scholar 

  24. M.T. McDowell, S.W. Lee, C. Wang, W.D. Nix, and Y. Cui: Studying the kinetics of crystalline silicon nanoparticle lithiation with in situ transmission electron microscopy. Adv. Mater. 24, 6034 (2012).

    Article  CAS  Google Scholar 

  25. H. Yang, W. Liang, X. Guo, C.M. Wang, and S. Zhang: Strong kinetics-stress coupling in lithiation of Si and Ge anodes. Extreme Mech. Lett. 2, 1 (2015).

    Article  Google Scholar 

  26. G. Sandu, L. Brassart, J.F. Gohy, T. Pardoen, S. Melinte, and A. Vlad: Surface coating mediated swelling and fracture of silicon nanowires during lithiation. ACS Nano 8, 9427 (2014).

    Article  CAS  Google Scholar 

  27. M.W. Verbrugge and B.J. Koch: Modeling lithium intercalation of singlefiber carbon microelectrodes. J. Electrochem. Soc. 143, 600 (1996).

    Article  CAS  Google Scholar 

  28. J. Christensen and J. Newman: Stress generation and fracture in lithium insertion materials. J. Solid State Electrochem. 10, 293 (2006).

    Article  CAS  Google Scholar 

  29. X. Zhang, W. Shyy, and A.M. Sastry: Numerical simulation of intercalation-induced stress in Li-ion battery electrode particles. J. Electrochem. Soc. 154, A910 (2007).

    Article  CAS  Google Scholar 

  30. Y.T. Cheng and M.W. Verbrugge: Evolution of stress within a spherical insertion electrode particle under potentiostatic and galvanostatic operation. J. Power Sources 190, 453 (2009).

    Article  CAS  Google Scholar 

  31. S. Golmon, K. Maute, S.H. Lee, and M.L. Dunn: Stress generation in silicon particles during lithium insertion. Appl. Phys. Lett. 97, 033111 (2010).

    Article  CAS  Google Scholar 

  32. H. Haftbaradaran, X. Xiao, M.W. Verbrugge, and H. Gao: Method to deduce the critical size for interfacial delamination of patterned electrode structures and application to lithiation of thin-film silicon islands. J. Power Sources 206, 357 (2012).

    Article  CAS  Google Scholar 

  33. Y. Gao and M. Zhou: Strong stress-enhanced diffusion in amorphous lithium alloy nanowire electrodes. J. Appl. Phys. 109, 014310 (2011).

    Article  CAS  Google Scholar 

  34. A.F. Bower, P.R. Guduru, and V.A. Sethuraman: A finite strain model of stress, diffusion, plastic flow, and electrochemical reactions in a lithium-ion half-cell. J. Mech. Phys. Solids 59, 804 (2011).

    Article  CAS  Google Scholar 

  35. L. Brassart, K. Zhao, and Z. Suo: Cyclic plasticity and shakedown in high-capacity electrodes of lithium-ion batteries. Int. J. Solids Struct. 50, 1120 (2013).

    Article  CAS  Google Scholar 

  36. Z. Cui, F. Gao, and J. Qu: A finite deformation stress-dependent chemical potential and its applications to lithium ion batteries. J. Mech. Phys. Solids 60, 1280 (2012).

    Article  CAS  Google Scholar 

  37. H. Yang, S. Huang, X. Huang, F. Fan, W. Liang, X.H. Liu, L.Q. Chen, J.Y. Huang, J. Li, T. Zhu, and S. Zhang: Orientation-dependent interfacial mobility governs the anisotropic swelling in lithiated silicon nanowires. Nano Lett. 12, 1953 (2012).

    Article  CAS  Google Scholar 

  38. H. Yang, F. Fan, W. Liang, X. Guo, T. Zhu, and S. Zhang: A chemo-mechanical model of lithiation in silicon. J. Mech. Phys. Solids 70, 349 (2014).

    Article  CAS  Google Scholar 

  39. Z. Jia and T. Li: Stress-modulated driving force for lithiation reaction in hollow nano-anodes. J. Power Sources 275, 866 (2015).

    Article  CAS  Google Scholar 

  40. Z. Jia and T. Li: Intrinsic stress mitigation via elastic softening during two-step electrochemical lithiation of amorphous silicon. J. Mech. Phys. Solids 91, 278 (2016).

    Article  CAS  Google Scholar 

  41. L.S. de Vasconcelos, R. Xu, J. Li, and K. Zhao: Grid indentation analysis of mechanical properties of composite electrodes in Li-ion batteries. Extreme Mech. Lett. (2016). doi: https://doi.org/10.1016/j.eml.2016.03.002.

  42. T. Hutzenlaub, S. Thiele, R. Zengerle, and C. Ziegler: Three-dimensional reconstruction of a LiCoO2 Li-ion battery cathode. Electrochem. Solid-State Lett. 15, A33 (2011).

    Article  CAS  Google Scholar 

  43. T. Hutzenlaub, S. Thiele, N. Paust, R. Spotnitz, R. Zengerle, and C. Walchshofer: Three-dimensional electrochemical Li-ion battery modelling featuring a focused ion-beam/scanning electron microscopy based three-phase reconstruction of a LiCoO2 cathode. Electrochim. Acta 115, 131 (2014).

    Article  CAS  Google Scholar 

  44. M. Ebner and V. Wood: Tool for tortuosity estimation in lithium ion battery porous electrodes. J. Electrochem. Soc. 162, A3064 (2015).

    Article  CAS  Google Scholar 

  45. C. Lim, B. Yan, L. Yin, and L. Zhu: Simulation of diffusion-induced stress using reconstructed electrodes particle structures generated by micro/nano-CT. Electrochim. Acta 75, 279 (2012).

    Article  CAS  Google Scholar 

  46. M.D. Chung, J.H. Seo, X.C. Zhang, and A.M. Sastry: Implementing realistic geometry and measured diffusion coefficients into single particle electrode modeling based on experiments with single LiMn2O4 spinel particles. J. Electrochem. Soc. 158, A371 (2011).

    Article  CAS  Google Scholar 

  47. J. Hun, M. Chung, M. Park, S. Woo, X. Zhang, and A. Marie: Generation of realistic particle structures and simulations of internal stress: A numerical/AFM study of LiMn2O4 particles. J. Electrochem. Soc. 158, A434 (2011).

    Article  CAS  Google Scholar 

  48. S.A. Roberts, V.E. Brunini, K.N. Long, and A.M. Grillet: A framework for three-dimensional mesoscale modeling of anisotropic swelling and mechanical deformation in lithium-ion electrodes. J. Electrochem. Soc. 161, F3052 (2014).

    Article  CAS  Google Scholar 

  49. H. Mendoza, S.A. Roberts, V.E. Brunini, and A.M. Grillet: Mechanical and electrochemical response of a LiCoO2 cathode using reconstructed microstructures. Electrochim. Acta 190, 1 (2016).

    Article  CAS  Google Scholar 

  50. K. Zhao, M. Pharr, S. Cai, J.J. Vlassak, and Z. Suo: Large plastic deformation in high-capacity lithium-ion batteries caused by charge and discharge. J. Am. Ceram. Soc. 94 (2011).

  51. R. Xu and K. Zhao: Mechanical interactions regulated kinetics and morphology of composite electrodes in Li-ion batteries. Extreme Mech. Lett. (2015). doi: https://doi.org/10.1016/j.eml.2015.10.004.

  52. M.M. Attard: Finite strain–isotropic hyperelasticity. Int. J. Solids Struct. 40, 4353 (2003).

    Article  Google Scholar 

  53. F.C. Larché and J.W. Cahn: Overview no. 41 the interactions of composition and stress in crystalline solids. Acta Metall. 33, 331 (1985).

    Article  Google Scholar 

  54. J. Christensen: Modeling diffusion-induced stress in Li-ion cells with porous electrodes. J. Electrochem. Soc. 157, A366 (2010).

    Article  CAS  Google Scholar 

  55. G.H. Kim, K. Smith, K.J. Lee, S. Santhanagopalan, and A. Pesaran: Multi-domain modeling of lithium-ion batteries encompassing multi-physics in varied length scales. J. Electrochem. Soc. 158, A955 (2011).

    Article  CAS  Google Scholar 

  56. A. Salvadori, D. Grazioli, and M.G.D. Geers: Governing equations for a two-scale analysis of Li-ion battery cells. Int. J. Solids Struct. 59, 90 (2015).

    Article  CAS  Google Scholar 

  57. Comsol: Comsol Multiphysics: Version 4.4. (2013).

  58. M. Ebner, F. Geldmacher, F. Marone, M. Stampanoni, and V. Wood: X-ray tomography of porous, transition metal oxide based lithium ion battery electrodes. Adv. Energy Mater. 3, 845 (2013).

    Article  CAS  Google Scholar 

  59. M. Ebner, F. Marone, M. Stampanoni, and V. Wood: Visualization and quantification of electrochemical and mechanical degradation in Li ion batteries. Science 342, 716 (2013).

    Article  CAS  Google Scholar 

  60. J. Joos, T. Carraro, A. Weber, and E. Ivers-Tiffée: Reconstruction of porous electrodes by FIB/SEM for detailed microstructure modeling. J. Power Sources 196, 7302 (2011).

    Article  CAS  Google Scholar 

  61. P.R. Shearing, L.E. Howard, P.S. Jørgensen, N.P. Brandon, and S.J. Harris: Characterization of the 3-dimensional microstructure of a graphite negative electrode from a Li-ion battery. Electrochem. Commun. 12, 374 (2010).

    Article  CAS  Google Scholar 

  62. Y. Wei, J. Zheng, S. Cui, X. Song, Y. Su, W. Deng, Z. Wu, X. Wang, W. Wang, M. Rao, Y. Lin, C. Wang, K. Amine, and F. Pan: Kinetics tuning of Li-ion diffusion in layered Li(NixMnyCoz)O2. J. Am. Chem. Soc. 137, 8364 (2015).

    Article  CAS  Google Scholar 

  63. Y. Koyama, I. Tanaka, H. Adachi, Y. Makimura, and T. Ohzuku: Crystal and electronic structures of superstructural Li1−x[Co1/3Ni1/3Mn1/3]O2 (0 ≤ x ≤ 1). J. Power Sources 119, 644 (2003).

    Article  CAS  Google Scholar 

  64. N. Qaiser, Y.J. Kim, C.S. Hong, and S.M. Han: Numerical modeling of fracture-resistant Sn micropillars as anode for lithium ion batteries. J. Phys. Chem. C 120, 6953 (2016).

    Article  CAS  Google Scholar 

  65. M. Winter and J.O. Besenhard: Electrochemical lithiation of tin and tin-based intermetallics and composites. Electrochim. Acta 45, 31 (1999).

    Article  CAS  Google Scholar 

  66. I.A. Courtney and J.R. Dahn: Electrochemical and in situ x-ray diffraction studies of the reaction of lithium with tin oxide composites. J. Electrochem. Soc. 144, 2045 (1997).

    Article  CAS  Google Scholar 

  67. R.E. Garcıa, Y.M. Chiang, W.C. Carter, P. Limthongkul, and C.M. Bishop: Microstructural modeling and design of rechargeable lithium-ion batteries. J. Electrochem. Soc. 152, A255 (2005).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work is supported by the National Science Foundation through the grant CBET-1603866. L.S. is grateful for the support of CAPES Foundation from the Brazil Ministry of Education. We acknowledge the generous supply of tomography data of NMC and SnO electrodes by Dr. Martin Ebner from the Wood group at ETH Zurich.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kejie Zhao.

Additional information

This paper has been selected as an Invited Feature Paper.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, R., de Vasconcelos, L.S. & Zhao, K. Computational analysis of chemomechanical behaviors of composite electrodes in Li-ion batteries. Journal of Materials Research 31, 2715–2727 (2016). https://doi.org/10.1557/jmr.2016.302

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.302

Navigation