Skip to main content
Log in

Growth and characteristics of AlGaN/GaN heterostructures on sp2-bonded BN by metal–organic chemical vapor deposition

  • Invited Papers
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

AlGaN/GaN heterostructures were grown by metal–organic chemical vapor deposition (MOCVD) on sp2-bonded BN using AlN as a nucleation layer. The best x-ray diffraction rocking curve full-width-at-half-maximums (FWHMs) are 0.13° and 0.17° for the GaN (0002) and (\(10\bar 12\)) diffraction peaks. Hall-effect measurements show room temperature mobility near 2000 cm/V·s with sheet carrier density of ∼1 × 1013 cm−2, comparable to the best values obtained on sapphire using Fe-doped GaN buffers. The best low temperature mobility of the 2-dimensional electron gas (2DEG) is ∼33,000 cm2/V·s; indicating that the dominant scattering mechanism limiting the transport of 2DEG is interface roughness. Good quality BN grown directly onto sapphire is shown to be effective for reducing parallel conduction that exists due to residual donor impurities in the buffer. Luminescence measurements indicate good optical quality of the GaN/BN/sapphire. The residual strain in the GaN layer is found to be almost completely eliminated when it is released from the substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. L.F. Eastman, V. Tilak, J. Smart, B.M. Green, E.M. Chumbers, R. Dimitrov, H. Kim, O.S. Ambacher, N. Weiman, and T. Prunty: Undoped AlGaN/GaN HEMTs for microwave power amplification. IEEE Trans. Electron Devices 48, 279 (2001).

    Article  Google Scholar 

  2. Y.F. Wu, D. Kapolnek, J.P. Ibbetson, P. Parikh, B.P. Keller, and U.K. Mishra: Very-high power density AlGaN/GaN HEMTs. IEEE Trans. Electron Devices 48, 586 (2001).

    Article  CAS  Google Scholar 

  3. S. Nakamura and M.R. Krames: History of gallium-nitride-based light-emitting diodes for illumination. Proc. IEEE 101, 2211 (2013).

    Article  CAS  Google Scholar 

  4. S. Nakamura, T. Mukai, and M. Senoh: Candela-class high brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes. Appl. Phys. Lett. 64, 1687 (1994).

    Article  CAS  Google Scholar 

  5. E. Mitani, M. Aojima, A. Maekawa, and S. Sano: An 800-W AlGaN/GaN HEMT for S-band high-power application. CSMantech on-line Dig. (2007).

  6. J. Schellenberg, B. Kim, and T. Phan: W-band, broadband 2W GaN MMIC. In IEEE MTT-S Int. Microw. Symp. Dig., June 1–4, 2013.

  7. R. Gaska, A. Osinsky, J.W. Yang, and M.S. Shur: Self-heating in high power AlGaN/GaN HFETs. IEEE Electron Device Lett. 19, 89 (1998).

    Article  CAS  Google Scholar 

  8. M. Alomari, A. Dussaigne, D. Martin, N. Grandjean, C. Gaquiere, and E. Kohn: AlGaN/GaN HEMT on (111) single crystalline diamond. Electron. Lett. 46, 299 (2010).

    Article  CAS  Google Scholar 

  9. K. Hirama, Y. Taniyasu, and M. Kasu: AlGaN/GaN high-electron mobility transistors with low thermal resistance grown on single-crystal diamond (111) substrates by metalorganic vapor-phase epitaxy. Appl. Phys. Lett. 98, 162112 (2011).

    Article  Google Scholar 

  10. J. Kim, C. Bayram, H. Park, C-W. Cheng, C. Dimitrakopoulos, J.A. Ott, K.B. Reuter, S.W. Bedell, and D.K. Sadana: Principle of direct van der Waals epitaxy of single-crystalline films on epitaxial graphene. Nat. Commun. 5 (2014).

  11. N. Nepal, V.D. Wheeler, T.J. Anderson, F.J. Kub, M.A. Mastro, R.L. Myers-Ward, S.B. Qadri, J.A. Freitas, S.C. Hernandez, L.O. Nyakiti, S.G. Walton, K. Gaskill, and C.R. Eddy, Jr.: Epitaxial growth of III–nitride/graphene heterostructures for electronic devices. Appl. Phys. Express 6, 061003 (2013).

    Article  Google Scholar 

  12. K. Chung, C.H. Lee, and G.C. Yi: Transferable GaN layers grown on ZnO-coated graphene layers for optoelectronic devices. Science 330, 655 (2010).

    Article  CAS  Google Scholar 

  13. M. Hiroki, K. Kumakura, Y. Kobayahi, T. Akasaka, T. Makimoto, and H. Yamamoto: Suppression of self-heating effect in AlGaN/GaN high electron mobility transistors by substrate-transfer technology using h-BN. Appl. Phys. Lett. 105, 193509 (2014).

    Article  Google Scholar 

  14. Y. Kobayashi, K. Kumakura, T. Akasaka, and T. Makimoto: Layered boron nitride as a release layer for mechanical transfer of GaN-based devices. Nature 484, 223 (2012).

    Article  CAS  Google Scholar 

  15. Y. Cordier, M. Azize, N. Baron, S. Chenot, O. Tottereau, and J. Massies: AlGaN/GaN HEMTs regrown by MBE on epi-ready semi-insulating GaN-on-sapphire with inhibited interface contamination. J. Cryst. Growth 309, 1 (2007).

    Article  CAS  Google Scholar 

  16. M. Wu, J.H. Leach, X. Ni, X. Li, J. Xie, S. Doğan, Ü. Özgür, H. Morkoça, T. Paskova, E. Preble, K.R. Evans, and C-Z. Lu: InAlN/GaN heterostructure field-effect transistors on Fe-doped semi-insulating GaN substrates. J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.—Process., Meas., Phenom., 28, 908 (2010).

    Article  CAS  Google Scholar 

  17. Y.C. Choi, M. Pophristic, H-Y. Cha, B. Peres, M.G. Spencer, and L.F. Eastman: The effect of an Fe-doped GaN buffer on off-state breakdown characteristics in AlGaN/GaN HEMTs on Si substrate. IEEE Trans. Electron Devices 53(12), 2926 (2006).

    Article  CAS  Google Scholar 

  18. A. Eblabla, X. Li, I. Thayne, D.J. Wallis, I. Guiney, and K. Elgaid: High performance GaN high electron mobility transistors on low resistivity silicon for X-band applications. IEEE Trans. Electron Dev Lett. 36(9), 899 (2015).

    Article  Google Scholar 

  19. S. Heikman, S. Keller, T. Mates, S.P. DenBaars, and U.K. Mishra: Growth and characteristics of Fe-doped GaN. J. Cryst. Growth 248, 513 (2013).

    Article  Google Scholar 

  20. Q.S. Paduano and M. Snure: Self-terminating growth in hexagonal boron nitride by metal organic chemical vapor deposition. Appl. Phys. Express 7, 071004 (2014).

    Article  Google Scholar 

  21. Z.Y. AlBalushi, T. Miyagi, Y-C. Lin, K. Wang, L. Calderin, G. Bhimanapati, J. Redwing, and J. Robinson: The impact of graphene properties on GaN and AlN nucleation. Surf. Sci. 634, 81 (2015).

    Article  CAS  Google Scholar 

  22. C.G. Dunn and E.F. Kogh: Comparison of dislocation densities of primary and secondary recrystallization grains of Si–Fe. Acta Metall. 5, 548 (1957).

    Article  CAS  Google Scholar 

  23. V. Srikant, J.S. Speck, and D.R. Clarke: Mosaic structure in epitaxial thin films having large lattice mismatch. J. Appl. Phys. 82, 4286 (1997).

    Article  CAS  Google Scholar 

  24. D. Jena, Y. Smorchkova, C. Elsass, A.C. Gossard, and U.K. Mishra: Electron transport and intrinsic mobility limits in two-dimensional electron gases of III–V nitride heterostructures. arXiv:cond-mat/0103461, (2001).

  25. D. Jena, A.C. Gossard, and U.K. Mishra: Dislocation scattering in a two-dimensional electron gas. Appl. Phys. Lett. 76, 1707 (2000).

    Article  CAS  Google Scholar 

  26. Q.S. Paduano, M. Snure, and J. Shoaf: Effect of V/III ratio on the growth of hexagonal boron nitride by MOCVD. MRS Proc. 1726, msrf14–1726–j04–26 (2015).

    Article  Google Scholar 

  27. M. Snure, Q. Paduano, and A. Kiefer: Effect of surface nitridation on the epitaxial growth of few-layer sp2 BN. J. Cryst. Growth 436, 16 (2016).

    Article  CAS  Google Scholar 

  28. I.P. Smorchkova, S. Keller, S. Heikman, C.R. Elsass, B. Heying, P. Fini, J.S. Speck, and U.K. Mishra: Two-dimensional electron-gas AlN/GaN heterostructures with extremely thin AlN barriers. Appl. Phys. Lett. 77, 3998 (2000).

    Article  CAS  Google Scholar 

  29. S.B. Lisesivdin, A. Yildiz, N. Balkan, M. Kasap, S. Ozcelik, and E. Ozbay: Scattering analysis of two-dimensional electrons in AlGaN/GaN with bulk related parameters extracted by simple parallel conduction extraction method. J. Appl. Phys. 108, 013712 (2010).

    Article  Google Scholar 

  30. D.C. Look, Z.Q. Fang, and B. Claflin: Identification of donors, acceptors, and traps in bulk-like HVPE GaN. J. Cryst. Growth 281, 143 (2005).

    Article  CAS  Google Scholar 

  31. H. Kim and T.G. Andersson: Characterization of AlxGa1−xN layers grown by molecular beam epitaxy. Phys. B 308–310, 93 (2001).

    Article  Google Scholar 

  32. M.A. Reshchilov and H. Morkoc: Luminescence properties of defects in GaN. J. Appl. Phys. 97, 061301 (2005).

    Article  Google Scholar 

  33. A.K. Viswanath, J.I. Lee, S. Yu, D. Kim, Y. Choi, and C. Hong: Photoluminescence studies of excitonic transitions in GaN epitaxial layers. J. Appl. Phys. 84, 3848 (1998).

    Article  CAS  Google Scholar 

  34. D.G. Zhao, S.J. Xu, M.H. Xie, and S.Y. Tong: Stress and its effect on optical properties of GaN epilayers grown on Si(111), 6H-SiC(0001), and c-plane sapphire. Appl. Phys. Lett. 83, 677 (2003).

    Article  CAS  Google Scholar 

  35. K.Y. Zang and S.J. Chua: Orders of magnitude reduction in dislocation density in GaN grown on Si (111) by nano lateral epitaxial overgrowth. Phys. Status Solidi C 5, 1585 (2008).

    Article  CAS  Google Scholar 

  36. K. Kitamura, S. Nakashima, N. Nakamura, K. Furuta, and H. Okumura: Raman scattering analysis of GaN with various dislocation densities. Phys. Status Solidi C 5, 1789 (2008).

    Article  CAS  Google Scholar 

  37. H. Harima: Properties of GaN and related compounds studied by means of Raman scattering. J. Phys.: Condens. Matter 14, R967 (2002).

    CAS  Google Scholar 

  38. J-M. Wagner and F. Bechstedt: Phonon deformation potentials of α-GaN and -AlN: An ab initio calculation. Appl. Phys. Lett. 77, 346 (2000).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENT

Authors would like to thank B. Moore and T. Prusnick for providing assistance in Raman measurements and strain analysis. Authors would also like to thank W. Rice and T. Cooper for the assistance in PL and transport measurements. This work is funded by Air Force Office of Scientific Research under task number 16RYCOR331. This support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Paduano.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paduano, Q., Snure, M., Siegel, G. et al. Growth and characteristics of AlGaN/GaN heterostructures on sp2-bonded BN by metal–organic chemical vapor deposition. Journal of Materials Research 31, 2204–2213 (2016). https://doi.org/10.1557/jmr.2016.260

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.260

Navigation