Skip to main content
Log in

Reduced hot cracking susceptibility by controlling the fusion ratio in laser welding of dissimilar Al alloys joints

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

With the increasing usage of Al alloys in vehicle manufacture, it is necessary to join dissimilar Al alloys with lap joint. However, hot cracking is a challenging issue due to the chemical composition and thermal tension, which greatly determines the reliability of automobile operation. Among different Al alloys, the series 5000 (Al–Mg) and 6000 (Al–Mg–Si) are widely used. To better understand the hot cracking behavior, various stack ups of AA5754 and AA6013 were laser welded to investigate the effects of process parameters on hot cracking formation. The chemical composition, microstructure, fusion ratio, and fracture morphology of the weld joint were also examined. The results showed that the order of material stacking affected weld’s susceptibility to hot cracking significantly, and the critical process parameters were obtained for tested conditions which could effectively reduce hot cracking. The findings from this work provide guidance for hot cracking prevention in laser welding of dissimilar Al alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12
FIG. 13
FIG. 14
FIG. 15
FIG. 16
FIG. 17

Similar content being viewed by others

References

  1. M. Schoenitz and E.L. Dreizin: Structure and properties of Al–Mg mechanical alloys. J. Mater. Res. 18, 1827 (2003).

    Article  CAS  Google Scholar 

  2. X. Liu, S. Lan, and J. Ni: Analysis of process parameters effects on friction stir welding of dissimilar aluminum alloy to advanced high strength steel. Mater. Des. 59, 50 (2014).

    Article  CAS  Google Scholar 

  3. A. Heinz, A. Haszler, C. Keidel, S. Moldenhauer, R. Benedictus, and W. Miller: Recent development in aluminium alloys for aerospace applications. Mater. Sci. Eng., A 280, 102 (2000).

    Article  Google Scholar 

  4. D. Živković and B. Anzulović: The fatigue of 5083 aluminium alloy welds with the shot-peened crater hot-cracks. Mater. Des. 26, 247 (2005).

    Article  Google Scholar 

  5. W. Miller, L. Zhuang, J. Bottema, A.J. Wittebrood, P. De Smet, A. Haszler, and A. Vieregge: Recent development in aluminium alloys for the automotive industry. Mater. Sci. Eng., A 280, 37 (2000).

    Article  Google Scholar 

  6. K.R. Brown, M.S. Venie, and R.A. Woods: The increasing use of aluminum in automotive applications. JOM 47, 20 (1995).

    Article  CAS  Google Scholar 

  7. T. Sakayama, Y. Naito, Y. Miyazakki, T. Nose, G. Murayma, K. Saita, and H. Oikawa: Dissimilar metal joining technologies for steel sheet and aluminum alloy sheet in auto body. Nippon Steel Technical Report 103, 91 (2013).

    Google Scholar 

  8. A. Kumar and S. Sundarrajan: Optimization of pulsed TIG welding process parameters on mechanical properties of AA 5456 aluminum alloy weldments. Mater. Des. 30, 1288 (2009).

    Article  CAS  Google Scholar 

  9. Y. Zhang and S. Zhang: Welding aluminum alloy 6061 with the opposing dual-torch GTAW process. Weld. J. 78, 222-s (1999).

    Google Scholar 

  10. T. Senthil Kumar, V. Balasubramanian, and M. Sanavullah: Influences of pulsed current tungsten inert gas welding parameters on the tensile properties of AA 6061 aluminium alloy. Mater. Des. 28, 2080 (2007).

    Article  CAS  Google Scholar 

  11. Y. Zhang, C. Pan, and A. Male: Improved microstructure and properties of 6061 aluminum alloy weldments using a double-sided arc welding process. Metall. Mater. Trans. A 31, 2537 (2000).

    Article  Google Scholar 

  12. W. Thomas and E. Nicholas: Friction stir welding for the transportation industries. Mater. Des. 18, 269 (1997).

    Article  CAS  Google Scholar 

  13. V. Fahimpour, S. Sadrnezhaad, and F. Karimzadeh: Corrosion behavior of aluminum 6061 alloy joined by friction stir welding and gas tungsten arc welding methods. Mater. Des. 39, 329 (2012).

    Article  CAS  Google Scholar 

  14. E. Taban, J.E. Gould, and J.C. Lippold: Dissimilar friction welding of 6061-T6 aluminum and AISI 1018 steel: Properties and microstructural characterization. Mater. Des. 31, 2305 (2010).

    Article  CAS  Google Scholar 

  15. J.M. Sánchez-Amaya, T. Delgado, L. González-Rovira, and F.J. Botana: Laser welding of aluminium alloys 5083 and 6082 under conduction regime. Appl. Surf. Sci. 255, 9512 (2009).

    Article  Google Scholar 

  16. P. Okon, G. Dearden, K. Watkins, M. Sharp, and P. French: Laser welding of aluminium alloy 5083. In ICALEO, 1 (2002).

  17. L. Quintino, A. Costa, R. Miranda, D. Yapp, V. Kumar, and C. Kong: Welding with high power fiber lasers–a preliminary study. Mater. Des. 28, 1231 (2007).

    Article  CAS  Google Scholar 

  18. J. Jia, S-L. Yang, W-Y. Ni, and J-Y. Bai: Microstructure and mechanical properties of fiber laser welded joints of ultrahigh-strength steel 22MnB5 and dual-phase steels. J. Mater. Res. 29, 2565 (2014).

    Article  CAS  Google Scholar 

  19. A. Haboudou, P. Peyre, A.B. Vannes, and G. Peix: Reduction of porosity content generated during Nd:YAG laser welding of A356 and AA5083 aluminium alloys. Mater. Sci. Eng., A 363, 40 (2003).

    Article  Google Scholar 

  20. Y. Chino, H. Iwasaki, and M. Mabuchi: Cavity growth rate in superplastic 5083 Al and AZ31 Mg alloys. J. Mater. Res. 19, 3382 (2004).

    Article  CAS  Google Scholar 

  21. K. Behler, J. Berkmanns, A. Ehrhardt, and W. Frohn: Laser beam welding of low weight materials and structures. Mater. Des. 18, 261 (1997).

    Article  CAS  Google Scholar 

  22. A. El-Batahgy and M. Kutsuna: Laser beam welding of AA5052, AA5083, and AA6061 aluminum alloys. Adv. Mater. Sci. Eng. 2009, 1 (2009).

    Article  Google Scholar 

  23. R. Akhter, L. Ivanchev, and H.P. Burger: Effect of pre/post T6 heat treatment on the mechanical properties of laser welded SSM cast A356 aluminium alloy. Mater. Sci. Eng., A 447, 192 (2007).

    Article  Google Scholar 

  24. T.Y. Kuo and H.C. Lin: Effects of pulse level of Nd-YAG laser on tensile properties and formability of laser weldments in automotive aluminum alloys. Mater. Sci. Eng., A 416, 281 (2006).

    Article  Google Scholar 

  25. A.S. Nagelberg: Observations on the role of Mg and Si in the directed oxidation of Al–Mg–Si alloys. J. Mater. Res. 7, 265 (1992).

    Article  CAS  Google Scholar 

  26. T. Luijendijk: Welding of dissimilar aluminium alloys. J. Mater. Process. Technol. 103, 29 (2000).

    Article  Google Scholar 

  27. S. Katayama, Y. Kawahito, and M. Mizutani: Elucidation of laser welding phenomena and factors affecting weld penetration and welding defects. Phys. Procedia 5, 9 (2010).

    Article  CAS  Google Scholar 

  28. E. Cicală, G. Duffet, H. Andrzejewski, D. Grevey, and S. Ignat: Hot cracking in Al–Mg–Si alloy laser welding—Operating parameters and their effects. Mater. Sci. Eng., A 395, 1 (2005).

    Article  Google Scholar 

  29. S. Kou: Solidification and liquation cracking issues in welding. JOM 55, 37 (2003).

    Article  CAS  Google Scholar 

  30. G. Cao and S. Kou: Predicting and reducing liquation-cracking susceptibility based on temperature vs. fraction solid. Weld. J. 85, 9-s (2006).

    Google Scholar 

  31. B. Andersson and L. Karlsson: Thermal stresses in large butt-welded plates. J. Therm. Stresses 4, 491 (1981).

    Article  Google Scholar 

  32. L. Hernandez and T. North: The influence of external local heating in preventing cracking during welding of aluminum alloy sheet. Weld. J. 63, 84-s (1984).

    Google Scholar 

  33. H. Ahmed, M. Wells, D. Maijer, B. Howes, and M. van der Winden: Modelling of microstructure evolution during hot rolling of AA5083 using an internal state variable approach integrated into an FE model. Mater. Sci. Eng., A 390, 278 (2005).

    Article  Google Scholar 

  34. G. Cao and S. Kou: Liquation cracking in full penetration Al-Si welds. Weld. J. 84, 63-s (2005).

    Google Scholar 

  35. C. Huang and S. Kou: Liquation cracking in full-penetration Al-Mg-Si welds. Weld. J. 83, 111-s (2004).

    Google Scholar 

  36. H. Zhang and S. Wang: A first-principles study on hot crack mechanism in Mg-Al-Ca alloys. J. Mater. Res. 27, 1631 (2012).

    Article  CAS  Google Scholar 

  37. Y. Shi, F. Zhong, X. Li, S. Gong, and L. Chen: Effect of laser beam welding on tear toughness of a 1420 aluminum alloy thin sheet. Mater. Sci. Eng., A 465, 153 (2007).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors gratefully acknowledge the financial support by the National Natural Science Foundation of China (Grant No. 51204109) and the Open Project of Shanghai Key Laboratory of Modern Metallurgy and Materials Processing (SELF-2011-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fenggui Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Lu, F., Wang, HP. et al. Reduced hot cracking susceptibility by controlling the fusion ratio in laser welding of dissimilar Al alloys joints. Journal of Materials Research 30, 993–1001 (2015). https://doi.org/10.1557/jmr.2015.64

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.64

Navigation