Skip to main content
Log in

Reversible transformation of NiGe in mechanically alloyed Ni–Ge powders

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We report the first observation of reversible equilibrium crystalline–metastable crystalline phase transformation in mechanically alloyed Ni–Ge powder mixtures. The formation of the equilibrium NiGe and metastable NiGe2 phases was investigated using x-ray diffraction and scanning electron microscopy methods. It was clearly shown that milling of the blended elemental powders first resulted in the formation of the equilibrium NiGe phase and continued milling led to the formation of the metastable NiGe2 phase. However, on milling for a longer time, the metastable phase transformed back to the equilibrium NiGe phase. The formation mechanisms of the stable and metastable phases and the reversibility of the phase transformations have been explained on the basis of the thermodynamic stability of the different phases and the contribution of defect concentration and surface energy effects to the free energy of the milled powder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5

Similar content being viewed by others

References

  1. D.Z. Chi, R.T.P. Lee, S.J. Chua, S.J. Lee, S. Ashok, and D-L. Kwong: Current–voltage characteristics of Schottky barriers with barrier heights larger than the semiconductor band gap: The case of NiGe/n-(001)Ge contact. J. Appl. Phys. 97, 113706 (2005).

    Article  Google Scholar 

  2. K. Saraswat, C.O. Chui, T. Krishnamohan, D. Kim, A. Nayfeh, and A. Pethe: High performance germanium MOSFETs. Mater. Sci. Eng. B135, 242 (2006).

    Article  Google Scholar 

  3. D.P. Brunco, K. Opsomer, B. De Jaeger, G. Winderickx, K. Verheyden, and M. Meuris: Observation and suppression of nickel germanide overgrowth on germanium substrates with patterned SiO2 structures. Electrochem. Solid-State Lett. 11, H39 (2008).

    Article  CAS  Google Scholar 

  4. T. Nishimura, S. Sakata, K. Nagashio, K. Kita, and A. Toriumi: Low temperature phosphorus activation in germanium through nickel germanidation for shallow n+/p junction. Appl. Phys. Express 2, 021202 (2009).

    Article  Google Scholar 

  5. S. Zaima, O. Nakatsuka, H. Kondo, M. Sakashita, A. Sakai, and M. Ogawa: Silicide and germanide technology for contacts and gates in MOSFET applications. Thin Solid Films 517, 80 (2008).

    Article  CAS  Google Scholar 

  6. T.B. Massalski, H. Okamoto, P.R. Subramanian, and L. Kacprzak eds.: Binary Alloy Phase Diagrams (ASM International, Materials Park, OH, 1990).

    Google Scholar 

  7. J.M. Jensen, S. Ly, and D.C. Johnson: Low-temperature preparation of high-temperature nickel germanides using multilayer reactants. Chem. Mater. 15, 4200 (2003).

    Article  CAS  Google Scholar 

  8. H. Takizawa, K. Uheda, and T. Endo: NiGe2: A new intermetallic compound synthesized under high pressure. J. Alloys Compd. 305, 306 (2000).

    Article  CAS  Google Scholar 

  9. P.S.Y. Lim, D.Z. Chi, P.C. Lim, X.C. Wang, T.W. Chan, T. Osipowicz, and Y.C. Yeo: Formation of epitaxial metastable NiGe2 thin film on Ge (100) by pulsed excimer laser anneal. Appl. Phys. Lett. 97, 182104 (2010).

    Article  Google Scholar 

  10. S. Ly, L.L. Miller, and D.C. Johnson: NiGe2: Synthesis and characterization of structure and properties. Presented at The American Physical Society, Northwest Section Spring Meeting, Pullman, WA, May 21–22, 2004. (2004APS.NWS.J1006L).

  11. C. Suryanarayana: Mechanical alloying and milling. Prog. Mater. Sci. 46, 1 (2001).

    Article  CAS  Google Scholar 

  12. C. Suryanarayana: Mechanical Alloying and Milling (Marcel Dekker, New York, 2004).

    Book  Google Scholar 

  13. C. Suryanarayana and N. Al-Aqeeli: Mechanically alloyed nanocomposites. Prog. Mater. Sci. 58, 383 (2013).

    Article  CAS  Google Scholar 

  14. B.D. Cullity and S.R. Stock: Elements of X-ray Diffraction, 3rd ed. (Prentice Hall, Upper Saddle River, NJ, 2001).

    Google Scholar 

  15. C. Suryanarayana and M.G. Norton: X-Ray Diffraction: A Practical Approach (Plenum, New York, 1998).

    Book  Google Scholar 

  16. D. Brandon and W.D. Kaplan: Microstructural Characterization of Materials (John Wiley & Sons, Chichester, UK, 1999).

    Google Scholar 

  17. C. Suryanarayana: Nanocrystalline materials. Int. Mater. Rev. 40, 41 (1995).

    Article  CAS  Google Scholar 

  18. D.R. Maurice and T.H. Courtney: The physics of mechanical alloying: A first report. Metall. Trans. A21, 289 (1990).

    Article  Google Scholar 

  19. R.M. Davis, B. McDermott, and C.C. Koch: Mechanical alloying of brittle materials. Metall. Trans. A19, 2867 (1988).

    Article  Google Scholar 

  20. S. Sharma, R. Vaidyanathan, and C. Suryanarayana: Criterion for predicting the glass-forming ability of alloys. Appl. Phys. Lett. 90, 111915 (2007).

    Article  Google Scholar 

  21. Y. Wang, C. Suryanarayana, and L. An: Phase transformation in nanometer-sized γ-alumina by mechanical milling. J. Am. Ceram. Soc. 88, 780 (2005).

    Article  CAS  Google Scholar 

  22. T.F. Grigor’eva, M.A. Korchagin, A.P. Barinova, E.Yu. Ivanov, and V.V. Boldyrev: Microstructural and phase transformations during the preparation of Ni-Ge solid solutions by mechanical alloying. Inorg. Mater. 36, 1235 (2000).

    Article  Google Scholar 

  23. M.L. Trudeau, R. Schulz, D. Dussault, and A. Van Neste: Structural changes during high-energy ball milling of iron-based amorphous alloys: Is high-energy ball milling equivalent to a thermal process?Phys. Rev. Lett. 64, 99 (1990).

    Article  CAS  Google Scholar 

  24. U. Patil, S.J. Hong, and C. Suryanarayana: An unusual phase transformation during mechanical alloying of an Fe-based bulk metallic glass composition. J. Alloys Compd. 389, 121 (2005).

    Article  CAS  Google Scholar 

  25. S. Sharma and C. Suryanarayana: Mechanical crystallization of Fe-based amorphous alloys. J. Appl. Phys. 102, 083544 (2007).

    Article  Google Scholar 

  26. M. Sherif El-Eskandarany, K. Aoki, K. Sumiyama, and K. Suzuki: Cyclic crystalline–amorphous transformations of mechanically alloyed Co75Ti25. Appl. Phys. Lett. 70, 1679 (1997).

    Article  Google Scholar 

  27. M. Sherif El-Eskandarany, K. Aoki, K. Sumiyama, and K. Suzuki: Mechanically induced cyclic crystalline-amorphous transformations of ball milled Co50Ti50 alloy. Scr. Mater. 36, 1001 (1997).

    Article  Google Scholar 

  28. M. Sherif El-Eskandarany, K. Aoki, K. Sumiyama, and K. Suzuki: Cyclic phase transformations of mechanically alloyed Co75Ti25 powders. Acta Mater. 50, 1113 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Suryanarayana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suryanarayana, C., Al-Joubori, A. Reversible transformation of NiGe in mechanically alloyed Ni–Ge powders. Journal of Materials Research 30, 2124–2132 (2015). https://doi.org/10.1557/jmr.2015.161

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.161

Navigation