Skip to main content
Log in

High temperature thermoelectric properties of BaxYbyFe3CoSb12 p-type skutterudites

  • Invited Review
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Double-filled high Fe content skutterudites, BaxYbyFe3CoSb12 (x + y = 1), were synthesized to investigate their high temperature transport properties. Both their phase and stoichiometry were characterized by powder x-ray diffraction and energy dispersive spectroscopy. The Seebeck coefficient, S, and electrical resistivity, ρ, increase with increasing temperature for all specimens over the entire measured temperature range. The thermal conductivity for the two low Ba content specimens decreases with increasing temperature up to 550 K at which point it increases with temperature due to bipolar diffusion. Bipolar diffusion becomes negligible with increasing Ba content. Due to this low bipolar diffusion, the ZT values of the higher Ba content specimens increase linearly with temperature, with the highest ZT value obtained for Ba0.9Yb0.1Fe3CoSb12.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. G.D. Mahan: Good thermoelectrics. Solid State Phys. 51, 81 (1998).

    Article  CAS  Google Scholar 

  2. G.S. Nolas, J.W. Sharp, and H.J. Goldsmid: Thermoelectrics: Basics Principles and New Materials Developments (Springer-Verlag, Berlin, Germany, 2001).

    Book  Google Scholar 

  3. T.M. Tritt: Thermoelectric phenomena, materials, and applications. Annu. Rev. Mater. Res. 41, 433 (2011).

    Article  CAS  Google Scholar 

  4. G.S. Nolas, J. Poon, and M.G. Kanatzidis: Recent developments in bulk thermoelectric materials. MRS Bull. 31, 199 (2006).

    Article  CAS  Google Scholar 

  5. G.S. Nolas, D.T. Morelli, and T.M. Tritt: Skurrerudites: A phonon-glass-electron crystal approach to advanced thermoelectric energy conversion applications. Annu. Rev. Mater. Sci. 29, 89 (1999).

    Article  CAS  Google Scholar 

  6. C. Uher: Skutterudites: Prospective novel thermoelectrics. Semicond. Semimetals 69, 139 (2001).

    Article  CAS  Google Scholar 

  7. G.S. Nolas, G.A. Slack, D.T. Morelli, T.M. Tritt, and A.C. Ehrlich: The effect of rare-earth filling on the lattice thermal conductivity of skutterudites. J. Appl. Phys. 79, 4002 (1996).

    Article  CAS  Google Scholar 

  8. D.T. Morelli and G.P. Meisner: Low temperature properties of the filled skutterudite CeFe4Sb12. J. Appl. Phys. 77, 3777 (1995).

    Article  CAS  Google Scholar 

  9. X. Shi, J. Yang, J.R. Salvador, M. Chi, J.Y. Cho, H. Wang, S. Bai, J. Yang, W. Zhang, and L. Chen: Multiple-filled Skutterudites: High thermoelectric figure of merit through separately optimizing electrical and thermal transports. J. Am. Chem. Soc. 133, 7837 (2011).

    Article  CAS  Google Scholar 

  10. S. Choi, K. Kurosaki, Y. Ohishi, H. Muta, and S. Yamanaka: Thermoelectric properties of Tl-filled Co-free p-type skutterudites: Tl x (Fe,Ni)4Sb12. J. Appl. Phys. 115, 023702 (2014).

    Article  Google Scholar 

  11. Y. Dong, P. Puneet, T.M. Tritt, and G.S. Nolas: Crystal structure and high temperature transport properties of Yb-filled p-type skutterudites YbxCo2.5Fe1.5Sb12. J. Solid State Chem. 209, 1 (2014).

    Article  CAS  Google Scholar 

  12. G. Tan, Y. Zheng, Y. Yan, and X. Tang: Preparation and thermoelectric properties of p-type filled skutterudites CeyFe4-xNixSb12. J. Alloys Compd. 584, 216 (2014).

    Article  CAS  Google Scholar 

  13. D. Kim, K. Kurosaki, Y. Ohishi, H. Muta, and S. Yamanaka: How thermoelectric properties of p-type Tl-filled skutterudites are improved. APL Mater. 1, 032115 (2013).

    Article  Google Scholar 

  14. G. Tan, W. Liu, H. Chi, X. Su, S. Wang, Y. Yan, X. Tang, W. Wong-Ng, and C. Uher: Realization of high thermoelectric performance in p-type unflled ternary skutterudites FeSb2+xTe1−x via band structure modification and significant point defect scattering. Acta Mater. 61, 7693 (2013).

    Article  CAS  Google Scholar 

  15. G. Tan, W. Liu, S. Wang, Y. Yan, H. Li, X. Tang, and C. Uher: Rapid preparation of CeFe4Sb12 skutterudite by melt spinning: Rich nanostructures and high thermoelectric performance. J. Mater. Chem. A 1, 12657 (2013).

    Article  CAS  Google Scholar 

  16. Q. Jie, H. Wang, W. Liu, H. Wang, G. Chen, and Z. Ren: Fast phase formation of double-filled p-type skutterudites by ball-milling and hot-pressing. Phys. Chem. Chem. Phys. 15, 6809 (2013).

    Article  CAS  Google Scholar 

  17. Y. Dong, P. Puneet, T.M. Tritt, and G.S. Nolas: High-temperature thermoelectric properties of p-type skutterudites YbxCo3FeSb12. Phys. Status Solidi RRL 7, 418 (2013).

    Article  CAS  Google Scholar 

  18. J. Yu, W. Zhao, H. Zhou, P. Wei, and Q. Zhang: Rapid preparation and thermoelectric properties of Ba and In double-filled p-type skutterudite bulk materials. Scr. Mater. 68, 643 (2013).

    Article  CAS  Google Scholar 

  19. L. Zhou, P. Qiu, C. Uher, X. Shi, and L. Chen: Thermoelectric properties of p-type YbxLayFe2.7Co1.3Sb12 double-filled skutterudites. Intermetallics 32, 209 (2013).

    Article  CAS  Google Scholar 

  20. Y. Dong, P. Puneet, T.M. Tritt, J. Martin, and G.S. Nolas: High temperature thermoelectric properties of p-type skutterudites BaxYbyCo4-zFezSb12. J. Appl. Phys. 112, 083718 (2012).

    Article  Google Scholar 

  21. P. Puneet, J. He, S. Zhu, and T.M. Tritt: Thermoelectric properties and Kondo behavior in indium incorporated p-type Ce0.9Fe3.5Ni0.5Sb12 skutterudites. J. Appl. Phys. 112, 033710 (2012).

    Article  Google Scholar 

  22. J. Yang, R. Liu, Z. Chen, L. Xi, J. Yang, W. Zhang, and L. Chen: Power factor enhancement in light valence band p-type skutterudites. Appl. Phys. Lett. 101, 022101 (2012).

    Article  Google Scholar 

  23. J.Y. Cho, Z. Ye, M.M. Tessema, R.A. Waldo, J.R. Salvador, J. Yang, W. Cai, and H. Wang: Thermoelectric properties of p-type skutterudites YbxFe3.5Ni0.5Sb12 (0.8≤x≤1). Acta Mater. 60, 2104 (2012).

    Article  CAS  Google Scholar 

  24. Y. Dong, P. Puneet, T.M. Tritt, and G.S. Nolas: High-temperature thermoelectric properties of p-type skutterudites Ba0.15YbxCo3FeSb12 and YbyCo3FeSb9As3. J. Mater. Sci. 50, 34 (2015).

    Article  CAS  Google Scholar 

  25. G. Rogl, A. Grytsiv, P. Rogl, E. Bauer, and M. Zehetbauer: A new generation of p-type didymium skutterudites with high ZT. Intermetallics 19, 546 (2011).

    Article  CAS  Google Scholar 

  26. G. Rogl, A. Grytsiv, P. Rogl, E. Bauer, M. Hochenhofer, R. Anbalagan, R.C. Mallik, and E. Schafler: Nanostructuring of p- and n-type skutterudites reaching figure of merit of approximately 1.3 and 1.6, respectively. Acta Mater. 76, 434 (2014).

    Article  CAS  Google Scholar 

  27. G.S. Nolas and G. Fowler: Partial filling of skutterudites: Optimization for thermoelectric applications. J. Mater. Res. 20, 3234 (2005).

    Article  CAS  Google Scholar 

  28. G.S. Nolas, M. Kaeser, R.T. Littleton, IV, and T.M. Tritt: High figure of merit in partially filled ytterbium skutterudite materials. Appl. Phys. Lett. 77, 1855 (2000).

    Article  CAS  Google Scholar 

  29. N.R. Dilley, E.J. Freeman, E.D. Bauer, and M.B. Maple: Intermediate valence in the skutterudite compound YbFe4Sb12. Phys. Rev. B 58, 6287 (1998).

    Article  CAS  Google Scholar 

  30. G.A. Lamberton, Jr., R.H. Tedstrom, T.M. Tritt, and G.S. Nolas: Thermoelectric properties of Yb-filled Ge-compensated CoSb3 skutterudite materials. J. Appl. Phys. 97, 113715 (2005).

    Article  Google Scholar 

  31. J.R. Salvador, J. Yang, X. Shi, H. Wang, A.A. Wereszczak, H. Kong, and C. Uher: Transport and mechanical properties of Yb-filled skutterudites. Philos. Mag. 89, 1517 (2009).

    Article  CAS  Google Scholar 

  32. A. Grytsiv, P. Rogl, H. Michor, E. Bauer, and G. Giester: InyCo4Sb12 skutterudite: Phase equilibria and crystal structure. J. Electron. Mater. 42, 2940 (2013).

    Article  CAS  Google Scholar 

  33. W. Kraus and G. Nolze: POWDER CELL—A program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. J. Appl. Crystallogr. 29, 301 (1996).

    Article  CAS  Google Scholar 

  34. R.D. Shannon: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr., Sect. A 32, 751 (1976).

    Article  Google Scholar 

  35. P.F. Qiu, J. Yang, R.H. Liu, X. Shi, X.Y. Huang, G.J. Snyder, W. Zhang, and L.D. Chen: High-temperature electrical and thermal transport properties of fully filled skutterudites RFe4Sb12 (R = Ca, Sr, Ba, La, Ce, Pr, Nd, Eu, and Yb). J. Appl. Phys. 109, 063713 (2011).

    Article  Google Scholar 

  36. J.S. Dyck, W. Chen, C. Uher, L. Chen, X. Tang, and T. Hirai: Thermoelectric properties of the n-type filled skutterudite Ba0.3Co4Sb14 doped with Ni. J. Appl. Phys. 91, 3698 (2002).

    Article  CAS  Google Scholar 

  37. R. Berman: Thermal Conductivity in Solids (Clarendon Press, Oxford, 1976).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the National Science Foundation Grant No. DMR-1400957. This work in Dr. Tritt’s laboratory acknowledges, in part, the support of a KAUST Faculty Initiated Collaboration grant and also some funding from Clemson University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George S. Nolas.

Additional information

This author was an editor of this focus issue during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/jmr-editor-manuscripts/

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Y., Nolas, G.S., Zeng, X. et al. High temperature thermoelectric properties of BaxYbyFe3CoSb12 p-type skutterudites. Journal of Materials Research 30, 2558–2563 (2015). https://doi.org/10.1557/jmr.2015.156

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.156

Navigation