Skip to main content
Log in

The effects of intergranular sliding on the fracture toughness of nanocrystalline materials with finest grains

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A new physical model of plastic deformation in nanocrystalline (NC) materials with finest grains (whose grain size is 2–4 nm) is suggested and theoretically described. The model represents the effect of the finest grains located at triple junctions on the fracture toughness of NC materials in the case that there are multiple dislocations pile-up at grain boundaries (GBs). The maximum number n of the pile-up dislocations is determined by both the capacity of dislocations emitting associated with the crack propagation and the capacity of dislocations pile-up due to the existence of the finest grains. The calculation indicates that the parameter n increases with increment of the grain size and decreases with the finest grain size increasing. The results theoretically reveal that the triple junctions with finest grains can significantly improve the fracture toughness of NC materials compared with the normal triple junctions in wide ranges of their structural parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5

Similar content being viewed by others

References

  1. K.M. Youssef, R.O. Scattergood, K.L. Murty, J.A. Horton, C.C. Koch, and N. Carolina: Ultrahigh strength and high ductility of bulk nanocrystalline copper. Appl. Phys. Lett. 87, 091904 (2005).

    Article  Google Scholar 

  2. Z. Shan, E.A. Stach, J.M.K. Wiezorek, J.A. Knapp, D.M. Follstaedt, and S.X. Mao: Grain boundary-mediated plasticity in nanocrystalline nickel. Science 305, 654 (2004).

    Article  CAS  Google Scholar 

  3. A.K. Mukherjee: An examination of the constitutive equation for elevated temperature plasticity. Mater. Sci. Eng. A 322, 1 (2002).

    Article  Google Scholar 

  4. C.C. Koch: Structural nanocrystalline materials: An overview. J. Mater. Sci. 42, 1403 (2007).

    Article  CAS  Google Scholar 

  5. H. Van Swygenhoven and M. Spaczer: Microscopic description of plasticity in computer generated metallic nanophase samples: A comparison between Cu and Ni. Acta Mater. 47, 3117 (1999).

    Article  Google Scholar 

  6. H. Van Swygenhoven and P. Derlet: Grain-boundary sliding in nanocrystalline fcc metals. Phys. Rev. B 64, 224105 (2001).

    Article  Google Scholar 

  7. J. Monk, B. Hyde, and D. Farkas: The role of partial grain boundary dislocations in grain boundary sliding and coupled grain boundary motion. J. Mater. Sci. 41, 7741 (2006).

    Article  CAS  Google Scholar 

  8. F. Yang and W. Yang: Brittle versus ductile transition of nanocrystalline metals. Int. J. Solids Struct. 45, 3897 (2008).

    Article  CAS  Google Scholar 

  9. F. Yang and W. Yang: Crack growth versus blunting in nanocrystalline metals with extremely small grain size. J. Mech. Phys. Solids 57, 305 (2009).

    Article  CAS  Google Scholar 

  10. M.Y. Gutkin, T. Ishizaki, S. Kuramoto, I.A. Ovid’ko, and N.V. Skiba: Giant faults in deformed gum metal. Int. J. Plasticity 24, 1333 (2008).

    Article  CAS  Google Scholar 

  11. I. Zizak, N. Darowski, S. Klaumünzer, G. Schumacher, J. Gerlach, and W. Assmann: Ion-beam-induced collective rotation of nanocrystals. Phys. Rev. Lett. 101, 065503 (2008).

    Article  Google Scholar 

  12. S.P. Joshi and K.T. Ramesh: Rotational diffusion and grain size dependent shear instability in nanostructured materials. Acta Mater. 56, 282 (2008).

    Article  CAS  Google Scholar 

  13. I.A. Ovid’ko and A.G. Sheinerman: Special rotational deformation in nanocrystalline metals and ceramics. Scripta Mater. 59, 119 (2008).

    Article  Google Scholar 

  14. N.F. Morozov, I.A. Ovid’ko, A.G. Sheinerman, and E.C. Aifantis: Special rotational deformation as a toughening mechanism in nanocrystalline solids. J. Mech. Phys. Solids 58, 1088 (2010).

    Article  CAS  Google Scholar 

  15. Y. Liu, J. Zhou, T.D. Shen, and D. Hui: Grain rotation dependent fracture toughness of nanocrystalline materials. Mater. Sci. Eng. A 528, 7684 (2011).

    Article  CAS  Google Scholar 

  16. X. Li, J. Zhou, R. Zhu, Y. Liu, and H. Jiang: Grain rotation dependent non-homogeneous deformation behavior in nanocrystalline materials. Mater. Sci. Eng. A 527, 5677 (2010).

    Article  Google Scholar 

  17. A.J. Asaro, P. Krysl, and B. Kad: Deformation mechanism transitions in nanoscale fcc metals. Philos. Mag. Lett. 83,733 (2003).

    Article  CAS  Google Scholar 

  18. I.A. Ovid’ko and A.G. Sheinerman: Ductile vs. brittle behavior of pre-cracked nanocrystalline and ultrafine-grained materials. Acta Mater. 58, 5286 (2010).

    Article  Google Scholar 

  19. A. Latapie and D. Farkas: Molecular dynamics investigation of the fracture behavior of nanocrystalline α-Fe. Phys. Rev. B 69, 134110 (2004).

    Article  Google Scholar 

  20. X. Xu, T. Nishimura, N. Hirosaki, R. Xie, Y. Yamamoto, and H. Tanaka: Superplastic deformation of nano-sized silicon nitride ceramics. Acta Mater. 54, 255 (2006).

    Article  CAS  Google Scholar 

  21. A.A. Fedorov, M.Y. Gutkin, and I.A. Ovid’ko: Transformations of grain boundary dislocation pile-ups in nano- and polycrystalline materials. Acta Mater. 51, 887 (2003).

    Article  CAS  Google Scholar 

  22. J. Schiøtz and K.W. Jacobsen: A maximum in the strength of nanocrystalline copper. Science 301, 1357 (2003).

    Article  Google Scholar 

  23. C. Zheng and Y.W. Zhang: Atomistic simulations of mechanical deformation of high-angle and low-angle nanocrystalline copper at room temperature. Mater. Sci. Eng. A 423, 97 (2006).

    Article  Google Scholar 

  24. A. Satta, E. Pisanu, L. Colombo, and F. Cleri: Microstructure evolution at a triple junction in polycrystalline materials. J. Phys. Condens. Matter 14, 13003 (2002).

    Article  CAS  Google Scholar 

  25. H. Gleiter: Our thoughts are ours, their ends none of our own: Are there ways to synthesize materials beyond the limitations of today?Acta Mater. 56, 5875 (2008).

    Article  CAS  Google Scholar 

  26. L. Hu, R. Huo, J. Zhou, Y. Wang, and S. Zhang: The effects of the finest grains on the mechanical behaviours of nanocrystalline materials. J. Nanopart. Res. 14, 677 (2012).

    Article  Google Scholar 

  27. Y. Liu, J. Zhou, T. Shen, and D. Hui: Effects of ultrafine nanograins on the fracture toughness of nanocrystalline materials. J. Mater. Res. 26, 1734 (2011).

    Article  CAS  Google Scholar 

  28. J.Y. Huang, Y.T. Zhu, H. Jiang, and T.C. Lowe: Microstructures and dislocation configurations in nanostructured Cu processed by repetitive corrugation and straightening. Acta Mater. 49, 1497 (2001).

    Article  CAS  Google Scholar 

  29. R.Z. Valiev: Nanostructuring of metals by severe plastic deformation for advanced properties. Nat. Mater. 3, 511 (2004).

    Article  CAS  Google Scholar 

  30. S.V. Bobylev, A.K. Mukherjee, I.A. Ovid, and A.G. Sheinerman: Effects of intergrain sliding on crack growth in nanocrystalline materials. Int. J. Plasticity 26, 1629 (2010).

    Article  CAS  Google Scholar 

  31. H. Li and F. Ebrahimi: Transition of deformation and fracture behaviors in nanostructured face-centered-cubic metals. Appl. Phys. Lett. 84, 4307 (2004).

    Article  CAS  Google Scholar 

  32. S.V. Bobylev, A.K. Mukherjee, and I.A. Ovid’ko: Emission of partial dislocations from amorphous intergranular boundaries in deformed nanocrystalline ceramics. Scripta Mater. 60, 36 (2009).

    Article  CAS  Google Scholar 

  33. J.P. Hirth and J. Lothe: Theory of Dislocations (Krieger Publishing Company, Florida, 1982).

    Google Scholar 

  34. N. Du, A. Bower, P. Krajewski, and E. Taleff: The influence of a threshold stress for grain boundary sliding on constitutive response of polycrystalline Al during high temperature deformation. Mater. Sci. Eng. A 494, 86 (2008).

    Article  Google Scholar 

  35. J. Eshelby, F. Frank, and F. Nabarro: XLI. The equilibrium of linear arrays of dislocations. Philos. Mag. 42, 351 (1951).

    Article  Google Scholar 

  36. I.H. Lin and R. Thomson: Cleavage, dislocation emission, and shielding for cracks under general loading. Acta Metall. 34, 187 (1986).

    Article  CAS  Google Scholar 

  37. J.R. Rice and R. Thomson: Ductile versus brittle behaviour of crystals. Philos. Mag. 29, 73 (1974).

    Article  CAS  Google Scholar 

  38. W.Z. Han, Z.F. Zhang, S.D. Wu, and S.X. Li: Combined effects of crystallographic orientation, stacking fault energy and grain size on deformation twinning in fcc crystals. Philos. Mag. 88, 3011 (2008).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by Key Project of Chinese Ministry of Education (211061), National Natural Science Foundation of China (10502025, 10872087, 11272143), and Program for Chinese New Century Excellent Talents in university (NCET-12-0712).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianqiu Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Zhou, J., Liu, H. et al. The effects of intergranular sliding on the fracture toughness of nanocrystalline materials with finest grains. Journal of Materials Research 29, 1086–1094 (2014). https://doi.org/10.1557/jmr.2014.89

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.89

Navigation