Skip to main content
Log in

Highly improving the electrochemical performance of LiFePO4 modified by metal phthalocyanines as cathode materials

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Two novel series of cathode materials LiFe1−xMxPO4/C (x ≈ 0.0040; M = Mn, Fe, Co, Ni, Cu, and Zn) composites based on metal phthalocyanines (MPc) and metal tetrasulfophthalocyanines (MPcTs) to modify lithium iron phosphate (LiFePO4) for lithium-ion batteries (LIBs) are in situ prepared by solvothermal and calcination techniques. Structures and morphologies of all the composites are characterized by normal methods. To evaluate the electrochemical performance of the composites, the charge/discharge capabilities, rate performance, cycling stabilities, cyclic voltammetry profiles, and electrochemical impedance spectroscopy plots of the LIBs using them as cathode materials are measured carefully. The results indicate that most of the composites deliver highly improved initial discharge capacity and show remarkable reversibility and cycling stabilities. Especially, composites using MPcTs as additives are more efficient for the improvement of specific capacity, rate capability, reversibility, and cycling stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9

Similar content being viewed by others

References

  1. A. Stein: Energy storage: Batteries take charge. Nat. Nanotechnol. 6, 262 (2011).

    Article  CAS  Google Scholar 

  2. L.X. Yuan, Z.H. Wang, W.X. Zhang, X.L. Hu, J.T. Chen, Y.H. Huang, and J.B. Goodenough: Development and challenges of LiFePO4 cathode material for lithium-ion batteries. Energy Environ. Sci. 4, 269 (2011).

    Article  CAS  Google Scholar 

  3. A.K. Padhi, K.S. Nanjundaswamy, and C. Masquelier: Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphates. J. Electrochem. Soc. 144, 1609 (1997).

    Article  CAS  Google Scholar 

  4. J. Wang and X. Sun: Understanding and recent development of carbon coating on LiFePO4 cathode materials for lithium-ion batteries. Energy Environ. Sci. 5, 5163 (2012).

    Article  CAS  Google Scholar 

  5. H.C. Shin, K.Y. Chung, W.S. Min, D.J. Byun, H. Jang, and B.W. Cho: Asymmetry between charge and discharge during high rate cycling in LiFePO4–in situ x-ray diffraction study. Electrochem. Commun. 10, 536 (2008).

    Article  CAS  Google Scholar 

  6. G. Wang, B. Wang, X. Wang, J. Park, S. Dou, H. Ahn, and K. Kim: Sn/graphene nanocomposite with 3D architecture for enhanced reversible lithium storage in lithium ion batteries. J. Mater. Chem. 19, 8378 (2009).

    Article  CAS  Google Scholar 

  7. D. Baster, K. Zheng, W. Zając, K. Świerczek, and J. Molenda: Toward elucidation of delithiation mechanism of zinc-substituted LiFePO4. Electrochim. Acta 92, 79 (2013).

    Article  CAS  Google Scholar 

  8. H. Zhang, D. Liu, X. Qian, C. Zhao, and Y. Xu: A novel nano structured LiFePO4/C composite as cathode for Li-ion batteries. J. Power Sources 249, 431 (2014).

    Article  CAS  Google Scholar 

  9. W.K. Kim, W.H. Ryu, D.W. Han, S. Lim, J.Y. Eom, and H.S. Kwon: Fabrication of graphene embedded LiFePO4 using a catalyst assisted self assembly method as a cathode material for high power lithium-ion batteries. ACS Appl. Mater. Interfaces 6, 4731 (2014).

    Article  CAS  Google Scholar 

  10. N. Zhou, E. Uchaker, H.Y. Wang, M. Zhang, S.Q. Liu, Y.N. Liu, X. Wu, G. Cao, and H. Li: Additive-free solvothermal synthesis of hierarchical flower-like LiFePO4/C mesocrystal and its electrochemical performance. RSC Adv. 3, 19366 (2013).

    Article  CAS  Google Scholar 

  11. M.Y. Cho, H. Kim, H. Kim, Y.S. Lim, K.B. Kim, J.W. Lee, K. Kang, and K.C. Roh: Size-selective synthesis of mesoporous LiFePO4/C microspheres based on nucleation and growth rate control of primary particles. J. Mater. Chem. A 2, 5922 (2014).

    Article  CAS  Google Scholar 

  12. G. Zeng, R. Caputo, D. Carriazo, L. Luo, and M. Niederberger: Tailoring two polymorphs of LiFePO4 by efficient microwave-assisted synthesis: A combined experimental and theoretical study. Chem. Mater. 25, 3399 (2013).

    Article  CAS  Google Scholar 

  13. G. Qin, S. Xue, Q. Ma, and C. Wang: The morphology controlled synthesis of 3D networking LiFePO4 with multiwalled-carbon nanotubes for Li-ion batteries. CrystEngComm 16, 260 (2014).

    Article  CAS  Google Scholar 

  14. S. Yang, M. Hu, L. Xi, R. Ma, Y. Dong, and C.Y. Chung: Solvothermal synthesis of monodisperse LiFePO4 micro hollow spheres as high performance cathode material for lithium ion batteries. ACS Appl. Mater. Interfaces 5, 8961–8967 (2013).

    Article  CAS  Google Scholar 

  15. A. Vu and A. Stein: Multiconstituent synthesis of LiFePO4/C composites with hierarchical porosity as cathode materials for lithium ion batteries. Chem. Mater. 23, 3237 (2011).

    Article  CAS  Google Scholar 

  16. H. Ni, J. Liu, and L.Z. Fan: Carbon-coated LiFePO4–porous carbon composites as cathode materials for lithium ion batteries. Nanoscale 5, 2164 (2013).

    Article  CAS  Google Scholar 

  17. D. Bhuvaneswari and N. Kalaiselvi: In situ carbon coated LiFePO4/C microrods with improved lithium intercalation behavior. Phys. Chem. Chem. Phys. 16, 1469 (2014).

    Article  CAS  Google Scholar 

  18. J. Mun, H.W. Ha, and W. Choi: LiFePO4 nano in reduced graphene oxide framework for efficient high-rate lithium storage. J. Power Sources 251, 386 (2014).

    Article  CAS  Google Scholar 

  19. Z.X. Chi, W. Zhang, F.Q. Cheng, J.T. Chen, A.M. Cao, and L.J. Wan: Optimizing the carbon coating on LiFePO4 for improved battery performance. RSC Adv. 4, 7795 (2014).

    Article  CAS  Google Scholar 

  20. D. Arumugam, G.P. Kalaignan, and P. Manisankar: Synthesis and electrochemical characterizations of nano-crystalline LiFePO4 and Mg-doped LiFePO4 cathode materials for rechargeable lithium-ion batteries. J. Solid State Electrochem. 13, 301 (2009).

    Article  CAS  Google Scholar 

  21. B. Wang, B. Xu, T. Liu, P. Liu, C. Guo, S. Wang, Q. Wang, Z. Xiong, D. Wang, and X.S. Zhao: Mesoporous carbon-coated LiFePO4 nanocrystals co-modified with graphene and Mg2+ doping as superior cathode materials for lithium ion batteries. Nanoscale 6, 986 (2014).

    Article  CAS  Google Scholar 

  22. G. Meligrana, F. Di Lupo, S. Ferrari, M. Destro, S. Bodoardo, N. Garino, and C. Gerbaldi: Surfactant-assisted mild hydrothermal synthesis to nanostructured mixed orthophosphates LiMnyFe1yPO4/C lithium insertion cathode materials. Electrochim. Acta 105, 99 (2013).

    Article  CAS  Google Scholar 

  23. H. Shu, X. Wang, Q. Wu, B. Hu, X. Yang, Q. Wei, Q. Liang, Y. Bai, M. Zhou, C. Wu, M. Chen, A. Wang, and L. Jiang: Improved electrochemical performance of LiFePO4/C cathode via Ni and Mn co-doping for lithium-ion batteries. J. Power Sources 237, 149 (2013).

    Article  CAS  Google Scholar 

  24. G. Ramos-Sanchez, A. Callejas-Tovar, L.G. Scanlon, and P.B. Balbuena: DFT analysis of Li intercalation mechanisms in the Fe-phthalocyanine cathode of Li-ion batteries. Phys. Chem. Chem. Phys. 16, 743 (2014).

    Article  CAS  Google Scholar 

  25. J. Yamaki and A. Yamaji: Phthalocyanine cathode materials for secondary lithium cells. J. Electrochem. Soc. 129, 5 (1982).

    Article  CAS  Google Scholar 

  26. H. Kantekin, G. Dilber, and A. Nas: Microwave-assisted synthesis and characterization of a new soluble metal-free and metallophthalocyanines peripherally fused to four 18-membered tetrathiadiaza macrocycles. J. Organomet. Chem. 695, 1210 (2010).

    Article  CAS  Google Scholar 

  27. A. Shaabani, N. Safari, and A. Bazgir: Synthesis of the tetrasulfo- and tetranitrophthalocyanine complexes under solvent-free and reflux conditions using microwave irradiation. Synth. Commun. 33, 1717 (2003).

    Article  CAS  Google Scholar 

  28. S.Y. Chung, J.T. Bloking, and Y.M. Chiang: Electronically conductive phospho-olivines as lithium storage electrodes. Nat. Mater. 1, 123 (2002).

    Article  CAS  Google Scholar 

  29. G.X. Wang, L. Yang, S.L. Bewlay, Y. Chen, H.K. Liu, and J.H. Ahn: Electrochemical properties of carbon coated LiFePO4 cathode materials. J. Power Sources 146, 521 (2005).

    Article  CAS  Google Scholar 

  30. G. Qin, Q. Wu, J. Zhao, Q. Ma, and C. Wang: C/LiFePO4/multi-walled carbon nanotube cathode material with enhanced electrochemical performance for lithium-ion batteries. J. Power Sources 248, 588 (2014).

    Article  CAS  Google Scholar 

  31. C. Miao, P. Bai, Q. Jiang, S. Sun, and X. Wang: A novel synthesis and characterization of LiFePO4 and LiFePO4/C as a cathode material for lithium-ion battery. J. Power Sources 246, 232 (2014).

    Article  CAS  Google Scholar 

  32. D. Andre, M. Meiler, K. Steiner, Ch. Wimmer, T. Soczka-Guth, and D.U. Sauer: Characterization of high-power lithium-ion batteries by electrochemical impedance spectroscopy. I. Experimental investigation. J. Power Sources 196, 5334 (2011).

    Article  CAS  Google Scholar 

  33. R. Chen, Y. Wu, and X.Y. Kong: Monodisperse porous LiFePO4/C microspheres derived by microwave-assisted hydrothermal process combined with carbothermal reduction for high power lithium-ion batteries. J. Power Sources 258, 246 (2014).

    Article  CAS  Google Scholar 

  34. Y. Lin, H. Pan, M. Gao, and Y. Liu: Effects of reductive conditions on the microstructure and electrochemical properties of sol-gel derived LiFePO4/C. J. Electrochem. Soc. 154, A1124 (2007).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank the National Natural Science Foundation of China (Nos. 21401149 and 21371143), the National Basic Research Program (973 Program 2013CB934001), “Science and Technology plan project of Xi’an City [No. CXY1438(6)], Key Laboratory Research and Establish Program of Shaanxi Education Section (No. 11JS112), and Special Foundation of Shaanxi Education Section (No. 12JK0603) for the financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ronglan Zhang or Jianshe Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, R., Zhang, R., Xu, B. et al. Highly improving the electrochemical performance of LiFePO4 modified by metal phthalocyanines as cathode materials. Journal of Materials Research 30, 645–653 (2015). https://doi.org/10.1557/jmr.2014.396

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.396

Navigation