Skip to main content
Log in

High cycle fatigue behavior of different regions in a low-pressure sand-cast GW103K magnesium alloy component

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Different parts of a casting may receive different microstructures during cooling particularly for the large scale casting, which can affect the fatigue behavior. In the present study, in consideration of the safety and reliability, the microstructures, tensile properties, and high cycle fatigue behaviors of different regions in a low-pressure sand-cast Mg–10Gd–3Y–0.5Zr (GW103K) magnesium alloy component with large scale and complicated structure were investigated. The results showed that the tensile properties particularly ultimate tensile strength (UTS) and elongation (EL) varied with regions and the fatigue strength varied in a range from 100 to 115 MPa. In addition, crack initiation, crack propagation, and fracture behavior of the studied alloys after tensile test and high cycle fatigue test were also investigated systematically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11

Similar content being viewed by others

References

  1. V. Ogarevic and R. Stephens: Fatigue of magnesium alloys. Annu. Rev. Mater. Sci. 20(1), 141 (1990).

    Article  CAS  Google Scholar 

  2. X. Li, W. Qi, K. Zheng, and N. Zhou: Enhanced strength and ductility of Mg–Gd–Y–Zr alloys by secondary extrusion. Journal of Magnesium and Alloys 1(1), 54 (2013).

    Article  CAS  Google Scholar 

  3. K. Zhang, X. Zhang, X. Deng, X.G. Li, and M.L. Ma: Relationship between extrusion, Y and corrosion behavior of Mg–Y alloy in NaCl aqueous solution. Journal of Magnesium and Alloys 1(2), 134 (2013).

    Article  CAS  Google Scholar 

  4. S.M. He: Study on the microstructural evolution, properties and fracture behavior of Mg-Gd-Y-Zr(-Ca) alloys. Ph.D. Thesis School of Materials Science and Engineering, Shanghai Jiao Tong University (2007).

  5. S.M. He, X.Q. Zeng, L.M. Peng, X. Gao, J.F. Nie, and W.J. Ding: Microstructure and strengthening mechanism of high strength Mg–10Gd–2Y–0.5 Zr alloy. J. Alloys Compd. 427(1), 316 (2007).

    Article  CAS  Google Scholar 

  6. S.M. He, X.Q. Zeng, L.M. Peng, X.W. Guo, J.W. Chang, and W.J. Ding: Microstructure, mechanical properties, creep and corrosion resistance of Mg-Gd-Y-Zr (-Ca) alloys. Mater. Sci. Forum 546, 101 (2007).

    Article  Google Scholar 

  7. V. Janik, D.D. Yin, Q.D. Wang, S.M. He, C.J. Chen, Z. Chen, and C.J. Boehlert: The elevated-temperature mechanical behavior of peak-aged Mg–10Gd–3Y–0.4Zr Alloy. Mater. Sci. Eng., A 528(7–8), 3105 (2011).

    Article  Google Scholar 

  8. Y. Lu, F. Taheri, and M. Gharghouri: Study of fatigue crack incubation and propagation mechanisms in a HPDC AM60B magnesium alloy. J. Alloys Compd. 466(1–2), 214 (2008).

    Article  CAS  Google Scholar 

  9. M. Horstemeyer: High cycle fatigue of a die cast AZ91E-T4 magnesium alloy. Acta Mater. 52(5), 1327 (2004).

    Article  CAS  Google Scholar 

  10. Y. Lu, F. Taheri, M.A. Gharghouri, and H.P. Han: Experimental and numerical study of the effects of porosity on fatigue crack initiation of HPDC magnesium AM60B alloy. J. Alloys Compd. 470(1–2), 202 (2009).

    Article  CAS  Google Scholar 

  11. D. Lin, L. Wang, F.Q. Meng, J.Z. Cui, and Q.C. Le: Effects of second phases on fracture behavior of Mg-10Gd-3Y-0.6 Zr alloy. Trans. Nonferrous Met. Soc. China 20, 421 (2010).

    Article  Google Scholar 

  12. W.C. Liu, J. Dong, P. Zhang, A.M. Korsunsky, X. Song, and W.J. Ding: Improvement of fatigue properties by shot peening for Mg–10Gd–3Y alloys under different conditions. Mater. Sci. Eng., A 528(18), 5935 (2011).

    Article  CAS  Google Scholar 

  13. S. Harvey, P. Marsh, and W. Gerberich: Atomic force microscopy and modeling of fatigue crack initiation in metals. Acta Metall. Mater. 42(10), 3493 (1994).

    Article  CAS  Google Scholar 

  14. Z.M. Li, P.H. Fu, L.M. Peng, Y.X. Wang, H.Y. Jiang, and G.H. Wu: Comparison of high cycle fatigue behaviors of Mg–3Nd–0.2Zn–Zr alloy prepared by different casting processes. Mater. Sci. Eng., A 579, 170 (2013).

    Article  CAS  Google Scholar 

  15. H.E. Kadiri, Y. Xue, M.F. Horstemeyer, J.B. Jordon, and P.T. Wang: Identification and modeling of fatigue crack growth mechanisms in a die-cast AM50 magnesium alloy. Acta Mater. 54(19), 5061 (2006).

    Article  Google Scholar 

  16. K. Gall, G. Biallas, H.J. Maier, M.F. Horstemeyer, and D.L. McDowell: Environmentally influenced microstructurally small fatigue crack growth in cast magnesium. Mater. Sci. Eng., A 396(1–2), 143 (2005).

    Article  Google Scholar 

  17. H.W. Höppel, M. Prell, L. May, and M. Göken: Influence of grain size and precipitates on the fatigue lives and deformation mechanisms in the VHCF-regime. Procedia Eng. 2(1), 1025 (2010).

    Article  Google Scholar 

  18. J.B. Clark: Age hardening in a Mg-9 wt% Al alloy. Acta Metall. 16(2), 141 (1968).

    Article  CAS  Google Scholar 

  19. N.E. Frost, K.J. Marsh, and L.P. Pook: Metal Fatigue (Clarendon, Oxford, UK, 1974).

    Google Scholar 

  20. J. Dong, W.C. Liu, X. Song, P. Zhang, W.J. Ding, and A.M. Korsunsky: Influence of heat treatment on fatigue behaviour of high-strength Mg–10Gd–3Y alloy. Mater. Sci. Eng., A 527(21–22), 6053 (2010).

    Article  Google Scholar 

  21. M. Lorenzo, J.M. Alegre, and I.I. Cuesta: Magnesium alloy defectology AZ91D high-pressure die cast and influence on the fatigue behaviour. Fatigue Fract. Eng. Mater. Struct. 36(10), 1017 (2013).

    Article  CAS  Google Scholar 

  22. H. Mayer, M. Papakyriacou, B. Zettl, and S.E. Stanzl-Tschegg: Influence of porosity on the fatigue limit of die cast magnesium and aluminium alloys. Int. J. Fatigue 25(3), 245 (2003).

    Article  CAS  Google Scholar 

  23. G. Murugan, K. Raghukandan, U.T.S. Pillai, and B.C. Pai: Modeling of the effect of a defect on HCF life of a magnesium AZ91 specimen subjected to transverse load. Procedia Eng. 55, 768 (2013).

    Article  CAS  Google Scholar 

  24. Z.L. He, P.H. Fu, Y.J. Wu, L.M. Peng, Y. Zhang, and Z.M. Li: High cycle fatigue behavior of as-cast Mg96.34Gd2.5Zn1Zr0.16 alloy fabricated by semi-continuous casting. Mater. Sci. Eng., A. 587, 72 (2013).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work is sponsored by Shanghai Rising-Star Program (B type, 14QB1403200), National Natural Science Foundation of China (No. 51275295), Research Fund for the Doctoral Program of Higher Education of China (Nos. 20120073120011 and 20130073110052), and IPP program in SJTU (No. IPP7036).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wencai Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, L., Liu, W., Li, Y. et al. High cycle fatigue behavior of different regions in a low-pressure sand-cast GW103K magnesium alloy component. Journal of Materials Research 29, 2587–2595 (2014). https://doi.org/10.1557/jmr.2014.286

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.286

Navigation