Skip to main content
Log in

Controlled loading of paramagnetic gadolinium oxide nanoplates in PMAO-g-PEG as effective T1-weighted MRI contrast agents

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Plate-shaped Gd2O3 nanoclusters (GNCs) with well-controlled loading were fabricated by using amphiphilic poly(maleic anhydride-alt-1-octadecene) (PMAO) grafted with PEG as nanogel. The hydrodynamic size of the obtained GNCs was well controlled to <260 nm under appropriate emulsion process conditions and they showed excellent long-term dispersibility in phosphate buffer saline. MRI measurements clearly indicated the substantial improvement in T1 effect of the nanoclusters as compared with the individual Gd2O3 nanoplates. The obtained GNCs possessed a high r1 value of 7.948 s−1mM−1 [Gd], which is 2.23 times higher than that of the commercial product Gd-DOTA, and low r2/r1 of 1.04. In vitro test of the obtained GNCs was demonstrated in NIH/3T3 cell lines, and clear T1-weighted images were obtained. Thus, the PMAO-g-PEG assisted GNCs were potentially useful for T1-weighted MRI contrast agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. C.H. Reynolds, N. Annan, K. Beshah, J.H. Huber, S.H. Shaber, R.E. Lenkinski, and J.A. Wortman: Gadolinium-loaded nanoparticles: New contrast agents for magnetic resonance imaging. J. Am. Chem. Soc. 122, 8940 (2000).

    Article  CAS  Google Scholar 

  2. G.H. Lee, Y. Chang, and T.J. Kim: Blood-pool and targeting MRI contrast agents: From Gd-chelates to Gd-nanoparticles. Eur. J. Inorg. Chem. 2012, 1924 (2012).

    Article  CAS  Google Scholar 

  3. J.Y. Park, M.J. Baek, E.S. Choi, S. Woo, J.H. Kim, T.J. Kim, J.C. Jung, K.S. Chae, Y. Chang, and G.H. Lee: Paramagnetic ultrasmall gadolinium oxide nanoparticles as advanced T1 MRI contrast agent: Account for large longitudinal relaxivity, optimal particle diameter, and in vivo T1 MR images. ACS Nano 3, 3663 (2009).

    Article  CAS  Google Scholar 

  4. K.R. Burnett, G.L. Wolf, H.R. Shumacher, Jr., and E.J. Goldstein: Gadolinium oxide: A prototype agent for contrast enhanced imaging of the liver and spleen with magnetic resonance. Magn. Reson. Imaging 3, 65 (1985).

    Article  CAS  Google Scholar 

  5. L. Faucher, Y. Gossuin, A. Hocq, and M.A. Fortin: Impact of agglomeration on the relaxometric properties of paramagnetic ultra-small gadolinium oxide nanoparticle. Nanotechnology 22, 295103 (2011).

    Article  Google Scholar 

  6. J.L. Bridot, A.C. Faure, S. Laurent, C. Riviere, C. Billotey, B. Hiba, M. Janier, V. Josserand, J.L. Coll, L. Vander Elst, R. Muller, S. Roux, P. Perriat, and O. Tillement: Hybrid gadolinium oxide nanoparticles: Multimodal contrast agents for in vivo imaging. J. Am. Chem. Soc. 129, 5076 (2007).

    Article  CAS  Google Scholar 

  7. K.M.L. Taylor, J.S. Kim, W.J. Rieter, H. An, W. Lin, and W. Lin: Mesoporous silica nanospheres as highly efficient MRI contrast agents. J. Am. Chem. Soc. 130, 2154 (2008).

    Article  CAS  Google Scholar 

  8. T. Kim, E. Momin, J. Choi, K. Yuan, H. Zaidi, J. Kim, M. Park, N. Lee, M.T. McMahon, A. Quinones-Hinojosa, J.W. Bulte, T. Hyeon, and A.A. Gilad: Mesoporous silica-coated hollow manganese oxide nanoparticles as positive T1 contrast agents for labeling and MRI tracking of adipose-derived mesenchymal stem cells. J. Am. Chem. Soc. 133, 2955 (2011).

    Article  CAS  Google Scholar 

  9. H. Kobayashi, S. Kawamoto, T. Saga, N. Sato, T. Ishimori, J. Konishi, K. Ono, K. Togashi, and M.W. Brechbiel: Avidin-dendrimer-(1B4M-Gd)(254): A tumor-targeting therapeutic agent for gadolinium neutron capture therapy of intraperitoneal disseminated tumor which can be monitored by MRI. Bioconjugate Chem. 12, 587 (2001).

    Article  CAS  Google Scholar 

  10. H. Kobayashi, S. Kawamoto, M. Bernardo, M.W. Brechbiel, M.V. Knopp, and P.L. Choyke: Delivery of gadolinium-labeled nanoparticles to the sentinel lymph node: Comparison of the sentinel node visualization and estimations of intra-nodal gadolinium concentration by the magnetic resonance imaging. J. Control Release 111, 343 (2006).

    Article  CAS  Google Scholar 

  11. M.A. Fortin, R.M. Petoral, F. Soderlind, A. Klasson, M. Engstrom, T. Veres, P.O. Kall, and K. Uvdal: Polyethylene glycol-covered ultra-small Gd2O3 nanoparticles for positive contrast at 1.5 T magnetic resonance clinical scanning. Nanotechnology 18, 395501 (2007).

    Article  Google Scholar 

  12. J.L. Bridot, D. Dayde, C. Riviere, C. Mandon, C. Billotey, S. Lerondel, R. Sabattier, G. Cartron, A. Le Pape, G. Blondiaux, M. Janier, P. Perriat, S. Roux, and O. Tillement: Hybrid gadolinium oxide nanoparticles combining imaging and therapy. J. Mater. Chem. 19, 2328 (2009).

    Article  CAS  Google Scholar 

  13. A.G. Macedo, M.A. Martins, S.E.M. Fernandes, A. Barros-Timmons, T. Trindade, L.D. Carlos, and J. Rocha: Luminescent SiO2-coated Gd2O3:Eu3+ nanorods/poly(styrene) nanocomposites by in situ polymerization. Opt. Mater. 32, 1622 (2010).

    Article  CAS  Google Scholar 

  14. E.N.M. Cheung, R.D.A. Alvares, W. Oakden, R. Chaudhary, M.L. Hill, J. Pichaandi, G.C.H. Mo, C. Yip, P.M. Macdonald, G.J. Stanisz, F. van Veggel, and R.S. Prosser: Polymer-stabilized lanthanide fluoride nanoparticle aggregates as contrast agents for magnetic resonance imaging and computed tomography. Chem. Mater. 22, 4728 (2010).

    Article  CAS  Google Scholar 

  15. W.W. Yu, E. Chang, C.M. Sayes, R. Drezek, and V.L. Colvin: Aqueous dispersion of monodisperse magnetic iron oxide nanocrystals through phase transfer. Nanotechnology 17, 4483 (2006).

    Article  CAS  Google Scholar 

  16. Y.C. Cao: Synthesis of square gadolinium-oxide nanoplates. J. Am. Chem. Soc. 126, 7456 (2004).

    Article  CAS  Google Scholar 

  17. J. Paek, C.H. Lee, J. Choi, S.Y. Choi, A. Kim, J.W. Lee, and K. Lee: Gadolinium oxide nanoring and nanoplate: Anisotropic shape control. Cryst. Growth Des. 7, 1378 (2007).

    Article  CAS  Google Scholar 

  18. S.V. Mahajan and J.H. Dickerson: Synthesis of monodisperse sub-3 nm RE2O3 and Gd2O3:RE3+ nanocrystals. Nanotechnology 18, 325605 (2007).

    Article  Google Scholar 

  19. M.J. Park, J. Park, T. Hyeon, and K. Char: Effect of interacting nanoparticles on the ordered morphology of block copolymer/nanoparticle mixtures. J. Polym. Sci., Part B-Polym. Phys. 44, 3571 (2006).

    Article  CAS  Google Scholar 

  20. F. Soderlind, H. Pedersen, R.M. Petoral, Jr., P-O. Kall, and K. Uvdal: Synthesis and characterisation of Gd2O3 nanocrystals functionalised by organic acids. J. Colloid Interface Sci. 288, 140 (2005).

    Article  Google Scholar 

  21. G.K. Das, B.C. Heng, S-C. Ng, T. White, J.S.C. Loo, L. D’Silva, P. Padmanabhan, K.K. Bhakoo, S.T. Selvan, and T.T.Y. Tan: Gadolinium oxide ultranarrow nanorods as multimodal contrast agents for optical and magnetic resonance imaging. Langmuir 26, 8959 (2010).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work is supported by the MOE’s ARF Tier 1 funding WBS R-284-000-102-112 (National University of Singapore, Singapore).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Min Xue.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, J., Peng, E. & Xue, J.M. Controlled loading of paramagnetic gadolinium oxide nanoplates in PMAO-g-PEG as effective T1-weighted MRI contrast agents. Journal of Materials Research 29, 1626–1634 (2014). https://doi.org/10.1557/jmr.2014.185

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2014.185

Navigation