Skip to main content
Log in

Rapid low-pressure plasma sintering of inkjet-printed silver nanoparticles for RFID antennas

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A rapid low-pressure plasma sintering process of inkjet-printed silver nanoparticles is reported, yielding a conductivity of 11.4% of bulk silver within 1 min of plasma exposure and a final conductivity up to 40% of bulk silver for longer sintering times. The maximum processing temperature did not exceed 70 °C, which enabled the use of cost-effective polyethylene terephthalate (PET) foils. Fully functional radio-frequency identification (RFID) tags were prepared with inkjet-printed antennas, which showed similar results as screen-printed devices. The inkjet-printed antennas require significantly less materials, hence thinner layers, than the screen-printed references.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
TABLE I.

Similar content being viewed by others

References

  1. D. Huang, F. Liao, S. Molesa, D. Redinger, and V. Subramanian: Plastic-compatible low resistance printable gold nanoparticle conductors for flexible electronics. J. Electrochem. Soc. 150(7), G412 (2003).

    Article  CAS  Google Scholar 

  2. S.B. Fuller, E.J. Wilhelm, and J.M. Jacobson: Inkjet printed nanoparticle microelectromechanical systems. J. Microelectromech. Syst. 11(1), 54 (2002).

    Article  Google Scholar 

  3. I. Reinhold, C.E. Hendriks, R. Eckardt, J.M. Kranenburg, J. Perelaer, R.R. Baumann, and U.S. Schubert: Argon plasma sintering of inkjet printed silver tracks on polymer substrates. J. Mater. Chem. 19(21), 3384 (2009).

    Article  CAS  Google Scholar 

  4. R.R. Søndergaard, M. Hösel, and F.C. Krebs: Roll-to-roll fabrication of large area functional organic materials. J. Polym. Sci., Part B: Polym. Phys. 51(1), 16 (2013).

    Article  Google Scholar 

  5. D.Y. Shin, Y. Lee, and C.H. Kim: Performance characterization of screen printed radio frequency identification antennas with silver nanopaste. Thin Solid Films 517(21), 6112 (2009).

    Article  CAS  Google Scholar 

  6. T. Kowalik, S. Worch, A. Hartwig, and H. Joachimi: Conductive UV curable adhesives for printed RFID antenna structures. Macromol. Symp. 254(1), 300 (2007).

    Article  CAS  Google Scholar 

  7. J. Perelaer, P.J. Smith, D. Mager, D. Soltman, S.K. Volkman, V. Subramanian, J.G. Korvink, and U.S. Schubert: Printed electronics: The challenges involved in printing devices, interconnects, and contacts based on inorganic materials. J. Mater. Chem. 20(39), 8446 (2010).

    Article  CAS  Google Scholar 

  8. P.J. Smith, D.Y. Shin, J.E. Stringer, B. Derby, and N. Reis: Direct inkjet printing and low temperature conversion of conductive silver patterns. J. Mater. Sci. 41(13), 4153 (2006).

    Article  CAS  Google Scholar 

  9. A. Kamyshny, J. Steinke, and S. Magdassi: Metal-based inkjet inks for printed electronics. Open Appl. Phys. J. 4, 19 (2011).

    Article  CAS  Google Scholar 

  10. J. Perelaer, A.W.M. de Laat, C.E. Hendriks, and U.S. Schubert: Inkjet printed silver tracks: Low temperature curing and thermal stability investigation. J. Mater. Chem. 18(27), 3209 (2008).

    Article  CAS  Google Scholar 

  11. S. Gamerith, A. Klug, H. Scheiber, U. Scherf, E. Moderegger, and E.J.W. List: Direct inkjet printing of Ag-Cu nanoparticle and Ag-precursor based electrodes for OFET applications. Adv. Funct. Mater. 17(16), 3111 (2007).

    Article  CAS  Google Scholar 

  12. R.S. Goeke and A.K. Datye: Model oxide supports for studies of catalyst sintering at elevated temperatures. Top. Catal. 46(1–2), 3 (2007).

    Article  CAS  Google Scholar 

  13. J. Perelaer and U.S. Schubert: Novel approaches for low temperature sintering of inkjet-printed inorganic nanoparticles for roll-to-roll (R2R) applications. J. Mater. Res. 28 (2013). doi: 10.1557/jmr.2012.419.

  14. S-J.L. Kang: Sintering: Densification, Grain Growth, and Microstructure, 1st ed. (Elsevier Butterworth-Heinemann, Burlington, 2005), pp. 37–77.

    Google Scholar 

  15. H.H. Lee, K.S. Chou, and K.C. Huang: Inkjet printing of nanosized silver colloids. Nanotechnology 16(10), 2436 (2005).

    Article  CAS  Google Scholar 

  16. J. Perelaer, R. Jani, M. Grouchko, A. Kamyshny, S. Magdassi, and U.S. Schubert: Plasma and microwave flash sintering of a tailored silver nanoparticle ink, yielding 60% bulk conductivity on cost-effective polymer foils. Adv. Mater. 24(29), 3993 (2012).

    Article  CAS  Google Scholar 

  17. H-S. Kim, S.R. Dhage, D-E. Shim, and H.T. Hahn: Intense pulsed light sintering of copper nanoink for printed electronics. Appl. Phys. A 97(4), 791 (2009).

    Article  CAS  Google Scholar 

  18. M. Grouchko, A. Kamyshny, C.F. Mihailescu, D.F. Anghel, and S. Magdassi: Conductive inks with a "built-in" mechanism that enables sintering at room temperature. ACS Nano 5(4), 3354 (2011).

    Article  CAS  Google Scholar 

  19. Y. Tang, W. He, G. Zhou, S. Wang, X. Yang, Z. Tao, and J. Zhou: A new approach causing the patterns fabricated by silver nanoparticles to be conductive without sintering. Nanotechnology 23, 355304 (2012).

    Article  Google Scholar 

  20. M. Hosel and F.C. Krebs: Large-scale roll-to-roll photonic sintering of flexo printed silver nanoparticle electrodes. J. Mater. Chem. 22(31), 15683 (2012).

    Article  Google Scholar 

  21. D. Angmo, T.T. Larsen-Olsen, M. Jørgensen, R.R. Søndergaard, and F.C. Krebs: Roll-to-roll inkjet printing and photonic sintering of electrodes for ITO free polymer solar cell modules and facile product integration. Adv. Energy Mater. (2012). doi: 10.1002/aenm.201200520.

    Google Scholar 

  22. S.H. Ko, H. Pan, C.P. Grigoropoulos, C.K. Luscombe, J.M.J. Frechet, and D. Poulikakos: Air stable high resolution organic transistors by selective laser sintering of inkjet printed metal nanoparticles. Appl. Phys. Lett. 90(14) (2007).

    Google Scholar 

  23. N.R. Bieri, J. Chung, D. Poulikakos, and C.P. Grigoropoulos: Manufacturing of nanoscale thickness gold lines by laser curing of a discretely deposited nanoparticle suspension. Superlattices Microstruct. 35(3–6), 437 (2004).

    Article  CAS  Google Scholar 

  24. M.L. Allen, M. Aronniemi, T. Mattila, A. Alastalo, K. Ojanpera, M. Suhonen, and H. Seppa: Electrical sintering of nanoparticle structures. Nanotechnology 19(17) (2008).

    Google Scholar 

  25. J. Leppaniemi, M. Aronniemi, T. Mattila, A. Alastalo, M. Allen, and H. Seppa: Printed WORM memory on a flexible substrate based on rapid electrical sintering of nanoparticles. IEEE Trans. Electron Devices 58(1), 151 (2011).

    Article  Google Scholar 

  26. R. Roy, D. Agarwal, J.P. Chen, and S. Gedevanishvili: Full sintering of powdered-metal bodies in a microwave field. Nature 399(6737), 668 (1999).

    Article  CAS  Google Scholar 

  27. J. Perelaer, B-J. de Gans, and U.S. Schubert: Inkjet printing and microwave sintering of conductive silver tracks. Adv. Mater. 18(16), 2101 (2006).

    Article  CAS  Google Scholar 

  28. S. Wunscher, S. Stumpf, A. Teichler, O. Pabst, J. Perelaer, E. Beckert, and U.S. Schubert: Localized atmospheric plasma sintering of inkjet printed silver nanoparticles. J. Mater. Chem. 22(47), 24569 (2012).

    Article  Google Scholar 

  29. J. Perelaer, R. Abbel, S. Wünscher, R. Jani, T. van Lammeren, and U.S. Schubert: Roll-to-roll compatible sintering of inkjet printed features by photonic and microwave exposure: From non-conductive ink to 40% bulk silver conductivity in less than 15 seconds. Adv. Mater. 24(19), 2620 (2012).

    Article  CAS  Google Scholar 

  30. R.D. Deegan: Pattern formation in drying drops. Phys. Rev. E 61(1), 475 (2000).

    Article  CAS  Google Scholar 

  31. S.L. Merilampi, T. Bjorninen, A. Vuorimaki, L. Ukkonen, P. Ruuskanen, and L. Sydanheimo: The effect of conductive ink layer thickness on the functioning of printed UHF RFID antennas. Proc. IEEE 98(9), 1610 (2010).

    Article  Google Scholar 

Download references

Acknowledgments

For financial support, the authors thank the Dutch Polymer Institute (DPI, technology area HTE) as well as the European Community’s Seventh Framework Program (FP7/2007–2013) under grant agreement no. 248816. Renzo Paulus, Laboratory of Organic and Macromolecular Chemistry, Friedrich-Schiller-University, Jena, is kindly acknowledged for his assistance with the TGA measurements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jolke Perelaer or Ulrich S. Schubert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolf, F.M., Perelaer, J., Stumpf, S. et al. Rapid low-pressure plasma sintering of inkjet-printed silver nanoparticles for RFID antennas. Journal of Materials Research 28, 1254–1261 (2013). https://doi.org/10.1557/jmr.2013.73

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2013.73

Navigation