Skip to main content

Advertisement

Log in

Complex oxide nanomembranes for energy conversion and storage: A review

  • Invited Review
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

An Erratum to this article was published on 01 January 2014

This article has been updated

Abstract

Oxide membranes are the foundation of several electrochemical devices and sensors, where functionality is related to selective transport of electrons and ions through a membrane or physical responses from an external perturbation. The ability to engineer power sources and sensors for the rapidly growing field of autonomous systems requires high power density and specific energy. Clamped free-standing nanoscale membranes provide an experimentally tunable platform to explore the limits of dimensionality reduction for such purposes. This review addresses the following: (i) advancing experimental methods to fabricate nanoscale oxide membranes that can sustain a chemical potential gradient, thermomechanically stable under large thermal cycles, and can be electrically interrogated with negligible parasitic loss; (ii) a representative example of high performance energy devices, solid oxide fuel cells, utilizing such membranes; and (iii) a brief discussion on emerging research directions broadly in the areas of condensed matter sciences and energy conversion and storage intersecting low-dimensional complex oxide materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11

Similar content being viewed by others

Change history

References

  1. I. Elmi, S. Zampolli, E. Cozzani, F. Mancarella, and G.C. Cardinali: Development of ultra-low-power consumption MOX sensors with ppb-level VOC detection capabilities for emerging applications. Sens. Actuators, B 135(1), 342 (2008).

    Article  CAS  Google Scholar 

  2. M.D. Nguyen, H.N. Vu, D.H.A. Blank, and G. Rijnders: Epitaxial Pb(Zr, Ti)O3 thin films for a MEMS application. Adv. Nat. Sci.: Nanosci. Nanotechnol. 2(1), 015005 (2011).

    Google Scholar 

  3. A. Kossoy, A.I. Frenkel, Y. Feldman, E. Wachtel, A. Milner, and I. Lubomirsky: The origin of elastic anomalies in thin films of oxygen deficient ceria, CeO2−x. Solid State Ionics 181(33–34), 1473 (2010).

    Article  CAS  Google Scholar 

  4. C. Ko, K. Kerman, and S. Ramanathan: Ultra-thin film solid oxide fuel cells utilizing un-doped nanostructured zirconia electrolytes. J. Power Sources 213(0), 343 (2012).

    Article  CAS  Google Scholar 

  5. I. Garbayo, A. Tarancón, J. Santiso, F. Peiró, E. Alarcón-Lladó, A. Cavallaro, I. Gràcia, C. Cané, and N. Sabaté: Electrical characterization of thermomechanically stable YSZ membranes for micro solid oxide fuel cells applications. Solid State Ionics 181(5–7), 322 (2010).

    Article  CAS  Google Scholar 

  6. S. Rey-Mermet and P. Muralt: Solid oxide fuel cell membranes supported by nickel grid anode. Solid State Ionics 179(27–32), 1497 (2008).

    Article  CAS  Google Scholar 

  7. M. Greenberg, E. Wachtel, I. Lubomirsky, J. Fleig, and J. Maier: Elasticity of solids with a large concentration of point defects. Adv. Funct. Mater. 16(1), 48 (2006).

    Article  CAS  Google Scholar 

  8. J.H. Shim, J.S. Park, J. An, T.M. Gür, S. Kang, and F.B. Prinz: Intermediate-temperature ceramic fuel cells with thin film yttrium-doped barium zirconate electrolytes. Chem. Mater. 21(14), 3290 (2009).

    Article  CAS  Google Scholar 

  9. J. He, P. Kanjanaboos, N.L. Frazer, A. Weis, X-M. Lin, and H.M. Jaeger: Fabrication and mechanical properties of large-scale freestanding nanoparticle membranes. Small 6(13), 1449 (2010).

    Article  CAS  Google Scholar 

  10. A. Dong, J. Chen, P.M. Vora, J.M. Kikkawa, and C.B. Murray: Binary nanocrystal superlattice membranes self-assembled at the liquid-air interface. Nature 466(7305), 474 (2010).

    Article  CAS  Google Scholar 

  11. J.S. Sim, Y. Zhou, and S. Ramanathan: Suspended sub-50 nm vanadium dioxide membrane transistors: Fabrication and ionic liquid gating studies. Nanoscale 4(22), 7056 (2012).

    Article  CAS  Google Scholar 

  12. M. Tsuchiya, B-K. Lai, A.C. Johnson, and S. Ramanathan: Photon-assisted synthesis of ultra-thin yttria-doped zirconia membranes: Structure, variable temperature conductivity and micro-fuel cell devices. J. Power Sources 195(4), 994 (2010).

    Article  CAS  Google Scholar 

  13. R.A. De Souza: The formation of equilibrium space-charge zones at grain boundaries in the perovskite oxide SrTiO3. Phys. Chem. Chem. Phys. 11(43), 9939 (2009).

    Article  CAS  Google Scholar 

  14. J. Maier: Defect chemistry and ionic conductivity in thin films. Solid State Ionics 23(1–2), 59 (1987).

    Article  CAS  Google Scholar 

  15. H.L. Tuller: Ionic conduction in nanocrystalline materials. Solid State Ionics 131(1–2), 143 (2000).

    Article  CAS  Google Scholar 

  16. S.M. Sze and K.K. Ng: Physics of Semiconductor Devices (John Wiley & Sons, Hoboken, NJ, 2006).

    Book  Google Scholar 

  17. H.L. Tuller, S.J. Litzelman, and W. Jung: Micro-ionics: Next generation power sources. Phys. Chem. Chem. Phys. 11(17), 3023 (2009).

    Article  CAS  Google Scholar 

  18. I. Kosacki, C.M. Rouleau, P.F. Becher, J. Bentley, and D.H. Lowndes: Nanoscale effects on the ionic conductivity in highly textured YSZ thin films. Solid State Ionics 176(13–14), 1319 (2005).

    Article  CAS  Google Scholar 

  19. B. Li, J. Zhang, T. Kaspar, V. Shutthanandan, R.C. Ewing, and J. Lian: Multilayered YSZ/GZO films with greatly enhanced ionic conduction for low temperature solid oxide fuel cells. Phys. Chem. Chem. Phys. 15(4), 1296 (2013).

    Article  CAS  Google Scholar 

  20. A. Karthikeyan, C-L. Chang, and S. Ramanathan: High temperature conductivity studies on nanoscale yttria-doped zirconia thin films and size effects. Appl. Phys. Lett. 89(18), 183116 (2006).

    Article  CAS  Google Scholar 

  21. M. Sillassen, P. Eklund, N. Pryds, E. Johnson, U. Helmersson, and J. Bøttiger: Low-temperature superionic conductivity in strained yttria-stabilized zirconia. Adv. Funct. Mater. 20(13), 2071 (2010).

    Article  CAS  Google Scholar 

  22. M. Gerstl, G. Friedbacher, F. Kubel, H. Hutter, and J. Fleig: The relevance of interfaces for oxide ion transport in yttria stabilized zirconia (YSZ) thin films. Phys. Chem. Chem. Phys. 15(4), 1097 (2013).

    Article  CAS  Google Scholar 

  23. X. Guo: Can we achieve significantly higher ionic conductivity in nanostructured zirconia?Scr. Mater. 65(2), 96 (2011).

    Article  CAS  Google Scholar 

  24. H-R. Kim, J-C. Kim, K-R. Lee, H-I. Ji, H-W. Lee, J-H. Lee, and J-W. Son: ‘Illusional’ nano-size effect due to artifacts of in-plane conductivity measurements of ultra-thin films. Phys. Chem. Chem. Phys. 13(13), 6133 (2011).

    Article  CAS  Google Scholar 

  25. E. Navickas, M. Gerstl, G. Friedbacher, F. Kubel, and J. Fleig: Measurement of the across-plane conductivity of YSZ thin films on silicon. Solid State Ionics 211(0), 58 (2012).

    Article  CAS  Google Scholar 

  26. S. Kim and J. Maier: On the conductivity mechanism of nanocrystalline ceria. J. Electrochem. Soc. 149(10), J73 (2002).

    Article  CAS  Google Scholar 

  27. X. Guo and Y. Ding: Grain boundary space charge effect in zirconia: Experimental evidence. J. Electrochem. Soc. 151(1), J1 (2004).

    Article  CAS  Google Scholar 

  28. A. Tschöpe: Grain size-dependent electrical conductivity of polycrystalline cerium oxide II: Space charge model. Solid State Ionics 139(3–4), 267 (2001).

    Article  Google Scholar 

  29. O.J. Durá, M.A. López de la Torre, L. Vázquez, J. Chaboy, R. Boada, and A. Rivera-Calzada, J. Santamaria, and C. Leon: Ionic conductivity of nanocrystalline yttria-stabilized zirconia: Grain boundary and size effects. Phys. Rev. B 81(18), 184301 (2010).

    Article  CAS  Google Scholar 

  30. I. Kosacki, T. Suzuki, V. Petrovsky, and H.U. Anderson: Electrical conductivity of nanocrystalline ceria and zirconia thin films. Solid State Ionics 136–137(0), 1225 (2000).

    Article  Google Scholar 

  31. H. Huang, T.M. Gur, Y. Saito, and F. Prinz: High ionic conductivity in ultrathin nanocrystalline gadolinia-doped ceria films. Appl. Phys. Lett. 89(14), 143107 (2006).

    Article  CAS  Google Scholar 

  32. A. Karthikeyan, M. Tsuchiya, C-L. Chang, and S. Ramanathan: Tunable electrical conductivity in nanoscale Gd-doped ceria thin films. Appl. Phys. Lett. 90(26), 263108 (2007).

    Article  CAS  Google Scholar 

  33. S.K.R.S. Sankaranarayanan and S. Ramanathan: Interface proximity effects on ionic conductivity in nanoscale oxide-ion conducting yttria stabilized zirconia: An atomistic simulation study. J. Chem. Phys. 134(6), 064703 (2011).

    Article  CAS  Google Scholar 

  34. W. Jung, J.L. Hertz, and H.L. Tuller: Enhanced ionic conductivity and phase meta-stability of nano-sized thin film yttria-doped zirconia (YDZ). Acta Mater. 57(5), 1399 (2009).

    Article  CAS  Google Scholar 

  35. S.C. Singhal and K. Kendall: High-temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications: Fundamentals, Design and Applications (Elsevier Inc., New York, 2003).

    Google Scholar 

  36. R.P. O’Hayre, S-W Cha, W. Colella, and F.B. Prinz: Fuel Cell Fundamentals (John Wiley & Sons, Hoboken, NJ, 2006).

    Google Scholar 

  37. A. Kushima and B. Yildiz: Oxygen ion diffusivity in strained yttria stabilized zirconia: Where is the fastest strain?J. Mater. Chem. 20(23), 4809 (2010).

    Article  CAS  Google Scholar 

  38. M.J.D. Rushton, A. Chroneos, S.J. Skinner, J.A. Kilner, and R.W. Grimes: Effect of strain on the oxygen diffusion in yttria and gadolinia co-doped ceria. Solid State Ionics 230(0), 37 (2013).

    Article  CAS  Google Scholar 

  39. J. Jiang, X. Hu, W. Shen, C. Ni, and J.L. Hertz: Improved ionic conductivity in strained yttria-stabilized zirconia thin films. Appl. Phys. Lett. 102(14), 143901 (2013).

    Article  CAS  Google Scholar 

  40. J.L.M. Rupp: Ionic diffusion as a matter of lattice-strain for electroceramic thin films. Solid State Ionics 207(0), 1 (2012).

    Article  CAS  Google Scholar 

  41. J.L.M. Rupp, B. Scherrer, A.S. Harvey, and L.J. Gauckler: Crystallization and grain growth kinetics for precipitation-based ceramics: A case study on amorphous ceria thin films from spray pyrolysis. Adv. Funct. Mater. 19(17), 2790 (2009).

    Article  CAS  Google Scholar 

  42. B. Scherrer, S. Heiroth, R. Hafner, J. Martynczuk, A. Bieberle-Hütter, J.L.M. Rupp, and L.J. Gauckler: Crystallization and microstructure of yttria-stabilized-zirconia thin films deposited by spray pyrolysis. Adv. Funct. Mater. 21(20), 3967 (2011).

    Article  CAS  Google Scholar 

  43. Y. Lvov, F. Essler, and G. Decher: Combination of polycation/polyanion self-assembly and Langmuir-Blodgett transfer for the construction of superlattice films. J. Phys. Chem. 97(51), 13773 (1993).

    Article  CAS  Google Scholar 

  44. G.G. Roberts: An applied science perspective of Langmuir-Blodgett films. Adv. Phys. 34(4), 475 (1985).

    Article  CAS  Google Scholar 

  45. L.J. Cote, F. Kim, and J. Huang: Langmuir–Blodgett assembly of graphite oxide single layers. J. Am. Chem. Soc. 131(3), 1043 (2008).

    Article  CAS  Google Scholar 

  46. G. Eda, G. Fanchini, and M. Chhowalla: Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 3(5), 270 (2008).

    Article  CAS  Google Scholar 

  47. W. Cheng, M.J. Campolongo, S.J. Tan, and D. Luo: Freestanding ultrathin nano-membranes via self-assembly. Nano Today 4(6), 482 (2009).

    Article  CAS  Google Scholar 

  48. J. Will, A. Mitterdorfer, C. Kleinlogel, D. Perednis, and L.J. Gauckler: Fabrication of thin electrolytes for second-generation solid oxide fuel cells. Solid State Ionics 131(1–2), 79 (2000).

    Article  CAS  Google Scholar 

  49. L.R. Pederson, P. Singh, and X.D. Zhou: Application of vacuum deposition methods to solid oxide fuel cells. Vacuum 80(10), 1066 (2006).

    Article  CAS  Google Scholar 

  50. K. Kerman, B-K. Lai, and S. Ramanathan: Free standing oxide alloy electrolytes for low temperature thin film solid oxide fuel cells. J. Power Sources 202(0), 120 (2012).

    Article  CAS  Google Scholar 

  51. K.R. Williams and R.S. Muller: Etch rates for micromachining processing. J. Microelectromech. Syst. 5(4), 256 (1996).

    Article  CAS  Google Scholar 

  52. K.R. Williams, K. Gupta, and M. Wasilik: Etch rates for micromachining processing: Part II. J. Microelectromech. Syst. 12(6), 761 (2003).

    Article  CAS  Google Scholar 

  53. C. Liu, V.B. Mungurwadi, and A.V. Nandi: Foundations of MEMS (Prentice Hall, Saddle River, NJ, 2011).

    Google Scholar 

  54. J. Korvink and O. Paul: MEMS: A Practical Guide to Design, Analysis and Applications (William Andrew Inc., Norwich, NY, 2005).

    Google Scholar 

  55. A. Evans, A. Bieberle-Hütter, J.L.M. Rupp, and L.J. Gauckler: Review on microfabricated micro-solid oxide fuel cell membranes. J. Power Sources 194(1), 119 (2009).

    Article  CAS  Google Scholar 

  56. C.D. Baertsch, K.F. Jensen, J.L. Hertz, H.L. Tuller, S.T. Vengallatore, S.M. Spearing, and M.A. Schmidt: Fabrication and structural characterization of self-supporting electrolyte membranes for a micro solid-oxide fuel cell. J. Mater. Res. 19(9), 2604 (2004).

    Article  CAS  Google Scholar 

  57. A.C. Johnson, B-K. Lai, H. Xiong, and S. Ramanathan: An experimental investigation into micro-fabricated solid oxide fuel cells with ultra-thin La0.6Sr0.4Co0.8Fe0.2O3 cathodes and yttria-doped zirconia electrolyte films. J. Power Sources 186(2), 252 (2009).

    Article  CAS  Google Scholar 

  58. H. Huang, M. Nakamura, P. Su, R. Fasching, Y. Saito, and F.B. Prinz: High-performance ultrathin solid oxide fuel cells for low-temperature operation. J. Electrochem. Soc. 154(1), B20 (2007).

    Article  CAS  Google Scholar 

  59. S.J. Litzelman, J.L. Hertz, W. Jung, and H.L. Tuller: Opportunities and challenges in materials development for thin film solid oxide fuel cells. Fuel Cells 8, 294 (2008).

    Article  CAS  Google Scholar 

  60. M. Tsuchiya, B-K. Lai, and S. Ramanathan: Scalable nanostructured membranes for solid-oxide fuel cells. Nat. Nanotechnol. 6(5), 282 (2011).

    Article  CAS  Google Scholar 

  61. H. Seidel, L. Csepregi, A. Heuberger, and H. Baumgärtel: Anisotropic etching of crystalline silicon in alkaline solutions: I. Orientation dependence and behavior of passivation layers. J. Electrochem. Soc. 137(11), 3612 (1990).

    Article  CAS  Google Scholar 

  62. J.L.M. Rupp, U.P. Muecke, P.C. Nalam, and L.J. Gauckler: Wet-etching of precipitation-based thin film microstructures for micro-solid oxide fuel cells. J. Power Sources 195(9), 2669 (2010).

    Article  CAS  Google Scholar 

  63. A. Bieberle-Hütter, P. Reinhard, J.L.M. Rupp, and L.J. Gauckler: The impact of etching during microfabrication on the microstructure and the electrical conductivity of gadolinia-doped ceria thin films. J. Power Sources 196(15), 6070 (2011).

    Article  CAS  Google Scholar 

  64. P-C. Su, C-C. Chao, J.H. Shim, R. Fasching, and F.B. Prinz: Solid oxide fuel cell with corrugated thin film electrolyte. Nano Lett. 8(8), 2289 (2008).

    Article  CAS  Google Scholar 

  65. P-C. Su and F.B. Prinz: Nanoscale membrane electrolyte array for solid oxide fuel cells. Electrochem. Commun. 16(1), 77 (2012).

    Article  CAS  Google Scholar 

  66. C-C. Chao, C-M. Hsu, Y. Cui, and F.B. Prinz: Improved solid oxide fuel cell performance with nanostructured electrolytes. ACS Nano 5(7), 5692 (2011).

    Article  CAS  Google Scholar 

  67. U.P. Muecke, D. Beckel, A. Bernard, A. Bieberle-Hütter, S. Graf, A. Infortuna, P. Müller, J.L.M. Rupp, J. Schneider, and L.J. Gauckler: Micro solid oxide fuel cells on glass ceramic substrates. Adv. Funct. Mater. 18(20), 3158 (2008).

    Article  CAS  Google Scholar 

  68. J. Hertz, A. Rothschild, and H. Tuller: Highly enhanced electrochemical performance of silicon-free platinum–yttria stabilized zirconia interfaces. J. Electroceram. 22(4), 428 (2009).

    Article  CAS  Google Scholar 

  69. B. Scherrer, A. Rossi, J. Martynczuk, M.D. Rossell, A. Bieberle-Hütter, J.L.M. Rupp, R. Erni, and L.J. Gauckler: Impact of substrate material and annealing conditions on the microstructure and chemistry of yttria-stabilized-zirconia thin films. J. Power Sources 196(18), 7372 (2011).

    Article  CAS  Google Scholar 

  70. S. Timoshenko: Theory of Elasticity (McGraw-Hill, United States, 1934).

    Google Scholar 

  71. L.L.D. Landau, E.M. Lifshitz, A.M. Kosevitch, and L.P. Pitaevskiĭ: Theory of Elasticity, Vol. 7 (Butterworth-Heinemann, Waltham, MA, 1986).

    Google Scholar 

  72. V. Ziebart, O. Paul, and H. Baltes: Strongly buckled square micromachined membranes. J. Microelectromech. Syst. 8(4), 423 (1999).

    Article  Google Scholar 

  73. E. Cerda and L. Mahadevan: Geometry and physics of wrinkling. Phys. Rev. Lett. 90(7), 074302 (2003).

    Article  CAS  Google Scholar 

  74. T. Tallinen, J.A. Astrom, and J. Timonen: The effect of plasticity in crumpling of thin sheets. Nat. Mater. 8(1), 25 (2009).

    Article  CAS  Google Scholar 

  75. L.B. Freund and S. Suresh: Thin Film Materials: Stress, Defect Formation and Surface Evolution (Cambridge University Press, Cambridge, UK, 2003).

    Google Scholar 

  76. K. Kerman, T. Tallinen, S. Ramanathan, and L. Mahadevan: Elastic configurations of self-supported oxide membranes for fuel cells. J. Power Sources 222(0), 359 (2013).

    Article  CAS  Google Scholar 

  77. J.H. Cheon, P.S. Shankar, and J.P. Singh: Influence of processing methods on residual stress evolution in coated conductors. Supercond. Sci. Technol. 18(1), 142 (2005).

    Article  CAS  Google Scholar 

  78. A. Evans, M. Prestat, R. Tölke, M.V.F. Schlupp, L.J. Gauckler, Y. Safa, T. Hocker, J. Courbat, D. Briand, N.F. de Rooij, and D. Courty: Residual stress and buckling patterns of free-standing yttria-stabilized-zirconia membranes fabricated by pulsed laser deposition. Fuel Cells 12(4), 614 (2012).

    Article  CAS  Google Scholar 

  79. J. Carneiro, V. Teixeira, A. Portinha, F. Vaz, and J. Ferreira: A real time scale measurement of residual stress evolution during coating deposition using electric extensometry. Rev. Adv. Mater. Sci. 7, 32 (2004).

    CAS  Google Scholar 

  80. D.J. Quinn, B. Wardle, and S.M. Spearing: Residual stress and microstructure of as-deposited and annealed, sputtered yttria-stabilized zirconia thin films. J. Mater. Res. 23(3), 609 (2008).

    Article  CAS  Google Scholar 

  81. Q. Xiao, H. He, S. Shao, J. Shao, and Z. Fan: Influences of deposition rate and oxygen partial pressure on residual stress and microstructure of YSZ thin films. Thin Solid Films 517(15), 4295 (2009).

    Article  CAS  Google Scholar 

  82. M. Ohring: Materials Science of Thin Films (Academic Press, San Diego, CA, 2001).

    Google Scholar 

  83. F. Spaepen: Interfaces and stresses in thin films. Acta Mater. 48(1), 31 (2000).

    Article  CAS  Google Scholar 

  84. K.V.L.V. Narayanachari and S. Raghavan: Stress and texture development during sputtering of yttria, zirconia, and yttria stabilized zirconia films on Si substrates. J. Appl. Phys. 112(7), 074910 (2012).

    Article  CAS  Google Scholar 

  85. R.W. Knoll and E.R. Bradley: Correlation between the stress and microstructure in bias-sputtered ZrO2-Y2O3 films. Thin Solid Films 117(3), 201 (1984).

    Article  CAS  Google Scholar 

  86. A. Infortuna, A.S. Harvey, and L.J. Gauckler: Microstructures of CGO and YSZ thin films by pulsed laser deposition. Adv. Funct. Mater. 18(1), 127 (2008).

    Article  CAS  Google Scholar 

  87. B.K. Lai, H. Xiong, M. Tsuchiya, A.C. Johnson, and S. Ramanathan: Microstructure and microfabrication considerations for self-supported on-chip ultra-thin micro-solid oxide fuel cell membranes. Fuel Cells 9(5), 699 (2009).

    Article  CAS  Google Scholar 

  88. S. Heiroth, R. Frison, J.L.M. Rupp, T. Lippert, E.J. Barthazy Meier, E. Müller Gubler, M. Döbeli, K. Conder, A. Wokaun, and L.J. Gauckler: Crystallization and grain growth characteristics of yttria-stabilized zirconia thin films grown by pulsed laser deposition. Solid State Ionics 191(1), 12 (2011).

    Article  CAS  Google Scholar 

  89. I. Garbayo, G. Dezanneau, C. Bogicevic, J. Santiso, I. Gràcia, N. Sabaté, and A. Tarancón: Pinhole-free YSZ self-supported membranes for micro solid oxide fuel cell applications. Solid State Ionics 216(0), 64 (2012).

    Article  CAS  Google Scholar 

  90. S. Rey-Mermet, Y. Yan, C. Sandu, G. Deng, and P. Muralt: Nanoporous YSZ film in electrolyte membrane of micro-solid oxide fuel cell. Thin Solid Films 518(16), 4743 (2010).

    Article  CAS  Google Scholar 

  91. C-W. Kwon, J-W. Son, J-H. Lee, H-M. Kim, H-W. Lee, and K-B. Kim: High-performance micro-solid oxide fuel cells fabricated on nanoporous anodic aluminum oxide templates. Adv. Funct. Mater. 21(6), 1154 (2011).

    Article  CAS  Google Scholar 

  92. B-K. Lai, K. Kerman, and S. Ramanathan: On the role of ultra-thin oxide cathode synthesis on the functionality of micro-solid oxide fuel cells: Structure, stress engineering and in situ observation of fuel cell membranes during operation. J. Power Sources 195(16), 5185 (2010).

    Article  CAS  Google Scholar 

  93. K. Kerman, B-K. Lai, and S. Ramanathan: Thin film nanocrystalline Ba0.5Sr0.5Co0.8Fe0.2O3: Synthesis, conductivity, and micro-solid oxide fuel cells. J. Power Sources 196(15), 6214 (2011).

    Article  CAS  Google Scholar 

  94. B-K. Lai, K. Kerman, and S. Ramanathan: Nanostructured La0.6Sr0.4Co0.8Fe0.2O3/Y0.08Zr0.92O1.96/La0.6Sr0.4Co0.8Fe0.2O3 (LSCF/YSZ/LSCF) symmetric thin film solid oxide fuel cells. J. Power Sources 196(4), 1826 (2011).

    Article  CAS  Google Scholar 

  95. V. Balakrishnan, C. Ko, and S. Ramanathan: In situ studies on twinning and cracking proximal to insulator–metal transition in self-supported VO2/Si3N4 membranes. J. Mater. Res. 27(11), 1476 (2012).

    Article  CAS  Google Scholar 

  96. P.J. Fillingham: Domain structure and twinning in crystals of vanadium dioxide. J. Appl. Phys. 38(12), 4823 (1967).

    Article  CAS  Google Scholar 

  97. Q. Van Overmeere, K. Kerman, and S. Ramanathan: Energy storage in ultrathin solid oxide fuel cells. Nano Lett. 12(7), 3756 (2012).

    Article  CAS  Google Scholar 

  98. I. Lubomirsky: Practical applications of the chemical strain effect in ionic and mixed conductors. Monatsh. Chem. 140(9), 1025 (2009).

    Article  CAS  Google Scholar 

  99. K.L. Duncan, Y. Wang, S.R. Bishop, F. Ebrahimi, and E.D. Wachsman: Role of point defects in the physical properties of fluorite oxides. J. Am. Ceram. Soc. 89(10), 3162 (2006).

    Article  CAS  Google Scholar 

  100. S.R. Bishop, K.L. Duncan, and E.D. Wachsman: Thermo-chemical expansion in strontium-doped lanthanum cobalt iron oxide. J. Am. Ceram. Soc. 93(12), 4115 (2010).

    Article  CAS  Google Scholar 

  101. D. Marrocchelli, S.R. Bishop, H.L. Tuller, and B. Yildiz: Understanding chemical expansion in non-stoichiometric oxides: Ceria and zirconia case studies. Adv. Funct. Mater. 22(9), 1958 (2012).

    Article  CAS  Google Scholar 

  102. S. Bishop, D. Marrocchelli, W. Fang, K. Amezawa, K. Yashiro, and G. Watson: Reducing the chemical expansion coefficient in ceria by addition of zirconia. Energy Environ. Sci. 6(4), 1142–1146 (2013).

    Article  CAS  Google Scholar 

  103. H.L. Tuller and S.R. Bishop: Point defects in oxides: Tailoring materials through defect engineering. Ann. Rev. Mater. Res. 41, 369 (2011).

    Article  CAS  Google Scholar 

  104. J.P. Nair, E. Wachtel, I. Lubomirsky, J. Fleig, and J. Maier: Anomalous expansion of CeO2 nanocrystalline membranes. Adv. Mater. 15(24), 2077 (2003).

    Article  CAS  Google Scholar 

  105. S.B. Adler: Chemical expansivity of electrochemical ceramics. J. Am. Ceram. Soc. 84(9), 2117 (2001).

    Article  CAS  Google Scholar 

  106. S.R. Bishop, K.L. Duncan, and E.D. Wachsman: Surface and bulk oxygen non-stoichiometry and bulk chemical expansion in gadolinium-doped cerium oxide. Acta Mater. 57(12), 3596 (2009).

    Article  CAS  Google Scholar 

  107. A.C. Johnson, A. Baclig, D.V. Harburg, B-K. Lai, and S. Ramanathan: Fabrication and electrochemical performance of thin-film solid oxide fuel cells with large area nanostructured membranes. J. Power Sources 195(4), 1149 (2010).

    Article  CAS  Google Scholar 

  108. S.A. Barnett: A new solid oxide fuel cell design based on thin film electrolytes. Energy 15(1), 1 (1990).

    Article  CAS  Google Scholar 

  109. L.C. De Jonghe, C.P. Jacobson, and S.J. Visco: Supported electrolyte thin film synthesis of solid oxide fuel cells. Ann. Rev. Mater. Res. 33(1), 169 (2003).

    Article  CAS  Google Scholar 

  110. A. Ignatiev, X. Chen, N. Wu, Z. Lu, and L. Smith: Nanostructured thin solid oxide fuel cells with high power density. Dalton Trans. (40), 5501 (2008).

  111. J. Fleig, H.L. Tuller, and J. Maier: Electrodes and electrolytes in micro-SOFCs: A discussion of geometrical constraints. Solid State Ionics 174(1–4), 261 (2004).

    Article  CAS  Google Scholar 

  112. K. Kerman, B-K. Lai, and S. Ramanathan: Pt/Y0.16Zr0.84O1.92/Pt thin film solid oxide fuel cells: Electrode microstructure and stability considerations. J. Power Sources 196(5), 2608 (2011).

    Article  CAS  Google Scholar 

  113. B.C.H. Steele and A. Heinzel: Materials for fuel-cell technologies. Nature 414(6861), 345 (2001).

    Article  CAS  Google Scholar 

  114. V.T. Srikar, K.T. Turner, T.Y. Andrew Ie, and S.M. Spearing: Structural design considerations for micromachined solid-oxide fuel cells. J. Power Sources 125(1), 62 (2004).

    Article  CAS  Google Scholar 

  115. Y. Tang, K. Stanley, J. Wu, D. Ghosh, and J. Zhang: Design consideration of micro thin film solid-oxide fuel cells. J. Micromech. Microeng. 15(9), S185 (2005).

    Article  CAS  Google Scholar 

  116. N. Yamamoto, D.J. Quinn, N. Wicks, J.L. Hertz, J. Cui, H.L. Tuller, and B.L. Wardle: Nonlinear thermomechanical design of microfabricated thin plate devices in the post-buckling regime. J. Micromech. Microeng. 20(3), 035027 (2010).

    Article  Google Scholar 

  117. E. Mutoro, S. Günther, B. Luerßen, I. Valov, and J. Janek: Electrode activation and degradation: Morphology changes of platinum electrodes on YSZ during electrochemical polarisation. Solid State Ionics 179(33–34), 1835 (2008).

    Article  CAS  Google Scholar 

  118. H. Galinski, T. Ryll, P. Elser, J.L.M. Rupp, A. Bieberle-Hütter, and L.J. Gauckler: Agglomeration of Pt thin films on dielectric substrates. Phys. Rev. B 82(23), 235415 (2010).

    Article  CAS  Google Scholar 

  119. C-W. Kwon, J-I. Lee, K-B. Kim, H-W. Lee, J-H. Lee, and J-W. Son: The thermomechanical stability of micro-solid oxide fuel cells fabricated on anodized aluminum oxide membranes. J. Power Sources 210(0), 178 (2012).

    Article  CAS  Google Scholar 

  120. K. Kerman, B-K. Lai, and S. Ramanathan: Nanoscale compositionally graded thin-film electrolyte membranes for low-temperature solid oxide fuel cells. Adv. Energy Mater. 2(6), 655 (2012).

    Article  Google Scholar 

  121. X. Wang, H. Huang, T. Holme, X. Tian, and F.B. Prinz: Thermal stabilities of nanoporous metallic electrodes at elevated temperatures. J. Power Sources 175(1), 75 (2008).

    Article  CAS  Google Scholar 

  122. N. Marković, T. Schmidt, V. Stamenković, and P. Ross: Oxygen reduction reaction on Pt and Pt bimetallic surfaces: A selective review. Fuel Cells 1(2), 105 (2001).

    Article  Google Scholar 

  123. H-S. Noh, J. Hwang, K. Yoon, B-K. Kim, H-W. Lee, J-H. Lee, and J-W. Son: Optimization of current collection to reduce the lateral conduction loss of thin-film-processed cathodes. J. Power Sources 230(0), 109 (2013).

    Article  CAS  Google Scholar 

  124. N. Baumann, E. Mutoro, and J. Janek: Porous model type electrodes by induced dewetting of thin Pt films on YSZ substrates. Solid State Ionics 181(1–2), 7 (2010).

    Article  CAS  Google Scholar 

  125. E.C. Brown, S.K. Wilke, D.A. Boyd, D.G. Goodwin, and S.M. Haile: Polymer sphere lithography for solid oxide fuel cells: A route to functional, well-defined electrode structures. J. Mater. Chem. 20(11), 2190 (2010).

    Article  CAS  Google Scholar 

  126. Y.B. Kim, C-M. Hsu, S.T. Connor, T.M. Gür, Y. Cui, and F.B. Prinz: Nanopore patterned Pt array electrodes for triple phase boundary study in low temperature SOFC. J. Electrochem. Soc. 157(9), B1269 (2010).

    Article  CAS  Google Scholar 

  127. A.Y. Lin and P.C. McIntyre: Morphological stability of mesoporous Pt thin films deposited via nanosphere lithography on YSZ. Electrochem. Solid-State Lett. 14(10), B96 (2011).

    Article  CAS  Google Scholar 

  128. N.J. Simrick, J.A. Kilner, A. Atkinson, J.L.M. Rupp, T.M. Ryll, A. Bieberle-Hütter, H. Galinski, and L.J. Gauckler: Micro-fabrication of patterned LSCF thin-film cathodes with gold current collectors. Solid State Ionics 192(1), 619 (2011).

    Article  CAS  Google Scholar 

  129. J.R. Wilson, W. Kobsiriphat, R. Mendoza, H-Y. Chen, J.M. Hiller, D.J. Miller, K. Thornton, P.W. Voorhees, S.B. Adler, and S.A. Barnett: Three-dimensional reconstruction of a solid-oxide fuel-cell anode. Nat. Mater. 5(7), 541 (2006).

    Article  CAS  Google Scholar 

  130. J.R. Wilson, M. Gameiro, K. Mischaikow, W. Kalies, P.W. Voorhees, and S.A. Barnett: Three-dimensional analysis of solid oxide fuel cell Ni-YSZ anode interconnectivity. Microsc. Microanal. 15(1), 71 (2009).

    Article  CAS  Google Scholar 

  131. D.N. Mueller, R.A. De Souza, T.E. Weirich, D. Roehrens, J. Mayer, and M. Martin: A kinetic study of the decomposition of the cubic perovskite-type oxide BaxSr1-xCo0.8Fe0.2O3-[small delta] (BSCF) (x = 0.1 and 0.5). Phys. Chem. Chem. Phys. 12(35), 10320 (2010).

    Article  CAS  Google Scholar 

  132. C. Niedrig, S. Taufall, M. Burriel, W. Menesklou, S.F. Wagner, S. Baumann, and E. Ivers-Tiffée: Thermal stability of the cubic phase in Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF)1. Solid State Ionics 197(1), 25 (2011).

    Article  CAS  Google Scholar 

  133. S.R. Bishop, K.L. Duncan, and E.D. Wachsman: Surface and bulk defect equilibria in strontium-doped lanthanum cobalt iron oxide. J. Electrochem. Soc. 156(10), B1242 (2009).

    Article  CAS  Google Scholar 

  134. S. Fearn, J. Rossiny, and J. Kilner: SIMS artifacts in the near surface depth profiling of oxygen conducting ceramics. Solid State Ionics 179(21–26), 811 (2008).

    Article  CAS  Google Scholar 

  135. Y. Chen, W. Jung, Z. Cai, J.J. Kim, H.L. Tuller, and B. Yildiz: Impact of Sr segregation on the electronic structure and oxygen reduction activity of SrTi1-xFexO3 surfaces. Energy Environ. Sci. 5(7), 7979 (2012).

    Article  CAS  Google Scholar 

  136. A-K. Huber, M. Falk, M. Rohnke, B. Luer, L. Gregoratti, M. Amati, and J. Janek: In situ study of electrochemical activation and surface segregation of the SOFC electrode material La0.75Sr0.25Cr0.5Mn0.5O3 =/− δPhys. Chem. Chem. Phys. 14(2), 751 (2012).

    Article  CAS  Google Scholar 

  137. H.J. Avila-Paredes, E. Barrera-Calva, H.U. Anderson, R.A. De Souza, M. Martin, Z.A. Munir, and S. Kim: Room-temperature protonic conduction in nanocrystalline films of yttria-stabilized zirconia. J. Mater. Chem. 20(30), 6235 (2010).

    Article  CAS  Google Scholar 

  138. S. Kim, U. Anselmi-Tamburini, H.J. Park, M. Martin, and Z.A. Munir: Unprecedented room-temperature electrical power generation using nanoscale fluorite-structured oxide electrolytes. Adv. Mater. 20(3), 556 (2008).

    Article  CAS  Google Scholar 

  139. D. Pergolesi, E. Fabbri, and E. Traversa: Chemically stable anode-supported solid oxide fuel cells based on Y-doped barium zirconate thin films having improved performance. Electrochem. Commun. 12(7), 977 (2010).

    Article  CAS  Google Scholar 

  140. W.G. Coors: Steam reforming, and water-gas shift by steam permeation in a protonic ceramic fuel cell. J. Electrochem. Soc. 151(7), A994 (2004).

    Article  CAS  Google Scholar 

  141. E. Fabbri, D. Pergolesi, and E. Traversa: Materials challenges toward proton-conducting oxide fuel cells: A critical review. Chem. Soc. Rev. 39(11), 4355 (2010).

    Article  CAS  Google Scholar 

  142. A. Podpirka, B. Viswanath, and S. Ramanathan: Active low temperature oxidation as a route to minimize electrode–oxide interface reactions in nanoscale capacitors. J. Appl. Phys. 108(2), 024106 (2010).

    Article  CAS  Google Scholar 

  143. M. Price, J. Dong, X. Gu, S.A. Speakman, E.A. Payzant, and T.M. Nenoff: Formation of YSZ–SDC solid solution in a nanocrystalline heterophase system and its effect on the electrical conductivity. J. Am. Ceram. Soc. 88(7), 1812 (2005).

    Article  CAS  Google Scholar 

  144. G.A. Tompsett, N.M. Sammes, and O. Yamamoto: Ceria–yttria-stabilized zirconia composite ceramic systems for applications as low-temperature electrolytes. J. Am. Ceram. Soc. 80(12), 3181 (1997).

    Article  CAS  Google Scholar 

  145. C.N. Ginestra, R. Sreenivasan, A. Karthikeyan, S. Ramanathan, and P.C. McIntyre: Atomic layer deposition of Y2O3/ ZrO2 nanolaminates: A route to ultrathin solid-state electrolyte membranes. Electrochem. Solid-State Lett. 10(10), B161 (2007).

    Article  CAS  Google Scholar 

  146. A. Karthikeyan, M. Tsuchiya, and S. Ramanathan: Apatite-phase synthesis from interdiffusion in doped CeO2–SiO2 thin-film superlattices and in situ conductivity studies. Electrochem. Solid-State Lett. 11(11), K101 (2008).

    Article  CAS  Google Scholar 

  147. Z. Fan, J. An, A. Iancu, and F.B. Prinz: Thickness effects of yttria-doped ceria interlayers on solid oxide fuel cells. J. Power Sources 218(0), 187 (2012).

    Article  CAS  Google Scholar 

  148. W.C. Chueh, Y. Hao, W. Jung, and S.M. Haile: High electrochemical activity of the oxide phase in model ceria–Pt and ceria–Ni composite anodes. Nat. Mater. 11(2), 155 (2012).

    Article  CAS  Google Scholar 

  149. Y. Takagi, B-K. Lai, K. Kerman, and S. Ramanathan: Low temperature thin film solid oxide fuel cells with nanoporous ruthenium anodes for direct methane operation. Energy Environ. Sci. 4(9), 3473 (2011).

    Article  CAS  Google Scholar 

  150. B-K. Lai, K. Kerman, and S. Ramanathan: Methane-fueled thin film micro-solid oxide fuel cells with nanoporous palladium anodes. J. Power Sources 196(15), 6299 (2011).

    Article  CAS  Google Scholar 

  151. Y. Takagi, S. Adam, and S. Ramanathan: Nanostructured ruthenium–gadolinia-doped ceria composite anodes for thin film solid oxide fuel cells. J. Power Sources 217(0), 543 (2012).

    Article  CAS  Google Scholar 

  152. Y. Takagi, K. Kerman, C. Ko, and S. Ramanathan: Operational characteristics of thin film solid oxide fuel cells with ruthenium anode in natural gas. J. Power Sources 243(0), 1 (2013).

    Article  CAS  Google Scholar 

  153. A. Atkinson, S. Barnett, R.J. Gorte, J. Irvine, A.J. McEvoy, M. Mogensen, S.C. Singhal, and J. Vohs: Advanced anodes for high-temperature fuel cells. Nat. Mater. 3(1), 17 (2004).

    Article  CAS  Google Scholar 

  154. R.J. Gorte, S. Park, J.M. Vohs, and C. Wang: Anodes for direct oxidation of dry hydrocarbons in a solid-oxide fuel cell. Adv. Mater. 12(19), 1465 (2000).

    Article  CAS  Google Scholar 

  155. M. Mogensen and K. Kammer: Conversion of hydrocarbons in solid oxide fuel cells. Ann. Rev. Mater. Res. 33(1), 321 (2003).

    Article  CAS  Google Scholar 

  156. S.B. Schaevitz: Powering the wireless world with MEMS.Proc. SPIE 8248, 824802 (2012).

    Article  Google Scholar 

  157. B-K. Lai, A.C. Johnson, M. Tsuchiya, and S. Ramanathan: Towards wafer-scale fabrication and 3D integration of micro-solid oxide fuel cells for portable energy.Proc. SPIE 7679, 767916 (2010).

    Article  CAS  Google Scholar 

  158. A. Bieberle-Hütter, D. Beckel, A. Infortuna, U.P. Muecke, J.L.M. Rupp, L.J. Gauckler, S. Rey-Mermet, P. Muralt, N.R. Bieri, N. Hotz, M.J. Stutz, D. Poulikakos, P. Heeb, P. Müller, A. Bernard, R. Gmür, and T. Hocker: A micro-solid oxide fuel cell system as battery replacement. J. Power Sources 177(1), 123 (2008).

    Article  CAS  Google Scholar 

  159. A. Bieberle-Hutter, A.J. Santis-Alvarez, B. Jiang, P. Heeb, T. Maeder, M. Nabavi, D. Poulikakos, P. Niedermann, A. Dommann, P. Muralt, A. Bernard, and L.J. Gauckler: Syngas generation from n-butane with an integrated MEMS assembly for gas processing in micro-solid oxide fuel cell systems. Lab Chip 12(22), 4894 (2012).

    Article  CAS  Google Scholar 

  160. J. Zaman and A. Chakma: Inorganic membrane reactors. J. Membr. Sci. 92(1), 1 (1994).

    Article  CAS  Google Scholar 

  161. R.W. Baker: Future directions of membrane gas separation technology. Ind. Eng. Chem. Res. 41(6), 1393 (2002).

    Article  CAS  Google Scholar 

  162. U. Balachandran, B. Ma, P. Maiya, R. Mieville, J. Dusek, J. Picciolo, J. Guan, S. Dorris, and M. Liu: Development of mixed-conducting oxides for gas separation. Solid State Ionics 108(1), 363 (1998).

    Article  CAS  Google Scholar 

  163. T. Norby and Y. Larring: Mixed hydrogen ion–electronic conductors for hydrogen permeable membranes. Solid State Ionics 136–137(0), 139 (2000).

    Article  Google Scholar 

  164. M.A. Laguna-Bercero: Recent advances in high temperature electrolysis using solid oxide fuel cells: A review. J. Power Sources 203(0), 4 (2012).

    Article  CAS  Google Scholar 

  165. P.N. Dyer, R.E. Richards, S.L. Russek, and D.M. Taylor: Ion transport membrane technology for oxygen separation and syngas production. Solid State Ionics 134(1–2), 21 (2000).

    Article  CAS  Google Scholar 

  166. C-Y. Tsai, A.G. Dixon, W.R. Moser, and Y.H. Ma: Dense perovskite membrane reactors for partial oxidation of methane to syngas. AIChE J. 43(S11), 2741 (1997).

    Article  CAS  Google Scholar 

  167. R.J. Wood, B. Finio, M. Karpelson, N.O. Pérez-Arancibia, P. Sreetharan, and J.P. Whitney: Challenges for micro-scale flapping-wing micro air vehicles. Proc. SPIE 8373, 83731J (2012).

    Article  Google Scholar 

  168. P.B. Koeneman, I.J. Busch-Vishniac, and K.L. Wood: Feasibility of micro power supplies for MEMS. J. Microelectromech. Syst. 6(4), 355 (1997).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENT

KK was supported by the Department of Defense through the NDSEG fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kian Kerman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kerman, K., Ramanathan, S. Complex oxide nanomembranes for energy conversion and storage: A review. Journal of Materials Research 29, 320–337 (2014). https://doi.org/10.1557/jmr.2013.301

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2013.301

Navigation