Skip to main content

Advertisement

Log in

Synthesis strategies for improving the performance of doped-BaZrO3 materials in solid oxide fuel cell applications

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Solid oxide fuel cells (SOFCs) offer an efficient energy conversion technology for alleviating current energy problems. High temperature proton-conducting (HTPC) oxides are promising electrolytes for this technology, since their activation energy is lower than that of conventional oxygen-ion conductors, enabling the operating temperature reduction at 600 °C. Among HTPC oxides, doped BaZrO3 materials possess high chemical stability, needed for practical applications. Though, poor sinterability and the resulting large volume of highly resistive grain boundaries hindered their deployment for many years. Nonetheless, the recently demonstrated high proton conductivity of the bulk revived the attention on doped BaZrO3, stimulating research on solving the sintering issues. The proper selection of dopants and sintering aids was demonstrated to be successful for improving the BaZrO3 electrolyte sinterability. We here briefly review the synthesis strategies proposed for preparing BaZrO3-based nanostructured powders for electrolyte and electrodes, with the aim to improve the SOFC performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
TABLE I.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.
TABLE II.
FIG. 9.
FIG. 10.

Similar content being viewed by others

References

  1. A.B. Stambouli and E. Traversa: Fuel cells, an alternative to standard sources of energy. Renewable Sustainable Energy Rev. 6, 295 (2002).

    Article  Google Scholar 

  2. E.D. Wachsman, C.A. Marlowe, and K.T. Lee: Role of solid oxide fuel cells in a balanced energy strategy. Energy Environ. Sci. 5, 5498 (2012).

    Article  Google Scholar 

  3. A.B. Stambouli and E. Traversa: Solid oxide fuel cells (SOFCs): A review of an environmentally clean and efficient source of energy. Renewable Sustainable Energy Rev. 6, 433 (2002).

    Article  CAS  Google Scholar 

  4. M.F. Han, X.L. Tang, H.Y. Yin, and S.P. Peng: Fabrication, microstructure and properties of a YSZ electrolyte for SOFCs. J. Power Sources 165, 757 (2007).

    Article  CAS  Google Scholar 

  5. K.F. Chen, Z. Lu, X.J. Chen, N. Ai, X.Q. Huang, X.B. Du, and W.H. Su: Development of LSM-based cathodes for solid oxide fuel cells based on YSZ films. J. Power Sources 172, 742 (2007).

    Article  CAS  Google Scholar 

  6. N.Q. Minh: Ceramic fuel cells. J. Am. Ceram. Soc. 76, 563 (1993).

    Article  CAS  Google Scholar 

  7. E.D. Wachsman and K.T. Lee: Lowering the temperature of solid oxide fuel cells. Science 334, 935 (2011).

    Article  CAS  Google Scholar 

  8. S. deSouza, S.J. Visco, and L.C. DeJonghe: Reduced-temperature solid oxide fuel cell based on YSZ thin-film electrolyte. J. Electrochem. Soc. 144, L35 (1997).

    Article  CAS  Google Scholar 

  9. D.H. Dong, M.F. Liu, K. Xie, J. Sheng, Y.H. Wang, X.B. Peng, X.Q. Liu, and G.Y. Meng: Improvement of cathode-electrolyte interfaces of tubular solid oxide fuel cells by fabricating dense YSZ electrolyte membranes with indented surfaces. J. Power Sources 175, 201 (2008).

    Article  CAS  Google Scholar 

  10. B.C.H. Steele and A. Heinzel: Materials for fuel-cell technologies. Nature 414, 345 (2001).

    Article  CAS  Google Scholar 

  11. T. Ishihara, H. Matsuda, and Y. Takita, Doped LaGaO3 perovskite-type oxide as a new oxide ionic conductor. J. Am. Chem. Soc. 116, 3801 (1994).

    Article  CAS  Google Scholar 

  12. V. Esposito and E. Traversa: Design of electroceramics for solid oxide fuel cell applications: Playing with ceria. J. Am. Ceram. Soc. 91, 1037 (2008).

    Article  CAS  Google Scholar 

  13. J.S. Ahn, D. Pergolesi, M.A. Camaratta, H.S. Yoon, B.W. Lee, K.T. Lee, D.W. Jung, E. Traversa, and E.D. Wachsman: High-performance bilayered electrolyte intermediate temperature solid oxide fuel cells. Electrochem. Commun. 11, 1504 (2009).

    Article  CAS  Google Scholar 

  14. F. Bozza, R. Polini, and E. Traversa: High performance anode-supported intermediate temperature solid oxide fuel cells (IT-SOFCs) with La0.8Sr0.2Ga0.8Mg0.2O3−δ electrolyte films prepared by electrophoretic deposition. Electrochem. Commun. 11, 1680 (2009).

    Article  CAS  Google Scholar 

  15. H. Iwahara, T. Esaka, H. Uchida, and N. Maeda: Proton conduction in sintered oxides and its application to steam electrolysis for hydrogen-production. Solid State Ionics 3–4, 359 (1981).

    Article  Google Scholar 

  16. H. Iwahara: High-temperature proton conducting oxides and their applications to solid electrolyte fuel-cells and steam electrolyzer for hydrogen-production. Solid State Ionics 28, 573 (1988).

    Article  Google Scholar 

  17. H. Iwahara, H. Uchida, and K. Morimoto: High-temperature solid electrolyte fuel-cells using perovskite-type oxide based on BaCeO3. J. Electrochem. Soc. 137, 462 (1990).

    Article  CAS  Google Scholar 

  18. E. Fabbri, D. Pergolesi, and E. Traversa: Materials challenges toward proton-conducting oxide fuel cells: A critical review. Chem. Soc. Rev. 39, 4355 (2010).

    Article  CAS  Google Scholar 

  19. T. Omata and S. Otsuka-Yao-Matsuo: Electrical properties of proton-conducting Ca2+-doped La2Zr2O7 with a pyrochlore-type structure. J. Electrochem. Soc. 148, E252 (2001).

    Article  CAS  Google Scholar 

  20. R. Haugsrud and T. Norby: Proton conduction in rare-earth ortho-niobates and ortho-tantalates. Nature Mater. 5, 193 (2006).

    Article  CAS  Google Scholar 

  21. Y. Kawasaki, S. Okada, N. Ito, H. Matsumoto, and T. Ishihara: Proton conduction and chemical stability of (La0.5Sr0.5)(Mg0.5+yNb0.5−y)O3−δ. Mater. Res. Bull. 44, 457 (2009).

    Article  CAS  Google Scholar 

  22. K.D. Kreuer: Proton-conducting oxides. Annu. Rev. Mater. Res. 33, 333 (2003).

    Article  CAS  Google Scholar 

  23. C.D. Zuo, S.W. Zha, M.L. Liu, M. Hatano, and M. Uchiyama: BaZr0.1Ce0.7Y0.2O3−δ as an electrolyte for low-temperature solid-oxide fuel cells. Adv. Mater. 18, 3318 (2006).

    Article  CAS  Google Scholar 

  24. E. Fabbri, L. Bi, D. Pergolesi, and E. Traversa: Towards the next generation of solid oxide fuel cells operating below 600 °C with chemically stable proton-conducting electrolytes. Adv. Mater. 24, 195 (2012).

    Article  CAS  Google Scholar 

  25. H. Iwahara, T. Yajima, T. Hibino, K. Ozaki, and H. Suzuki: Protonic conduction in calcium, strontium and barium zirconates. Solid State Ionics 61, 65 (1993).

    Article  CAS  Google Scholar 

  26. K. Katahira, Y. Kohchi, T. Shimura, and H. Iwahara: Protonic conduction in Zr-substituted BaCeO3. Solid State Ionics 138, 91 (2000).

    Article  CAS  Google Scholar 

  27. J.W. Phair and S.P.S. Badwal: Review of proton conductors for hydrogen separation. Ionics 12, 103 (2006).

    Article  CAS  Google Scholar 

  28. Z.M. Zhong: Stability and conductivity study of the BaCe0.9−xZrxY0.1O2.95 systems. Solid State Ionics 178, 213 (2007).

    Article  CAS  Google Scholar 

  29. E. Fabbri, A. D'Epifanio, E. Di Bartolomeo, S. Licoccia, and E. Traversa: Tailoring the chemical stability of BaCe0.8−xZrxY0.2O3−δ protonic conductors for intermediate temperature solid oxide fuel cells (IT-SOFCs). Solid State Ionics 179, 558 (2008).

    Article  CAS  Google Scholar 

  30. E. Fabbri, D. Pergolesi, A. D'Epifanio, E. Di Bartolomeo, G. Balestrino, S. Licoccia, and E. Traversa: Design and fabrication of a chemically-stable proton conductor bilayer electrolyte for intermediate temperature solid oxide fuel cells (IT-SOFCs). Energy Environ. Sci. 1, 355 (2008).

    Article  CAS  Google Scholar 

  31. R.R. Peng, Y. Wu, L.Z. Yang, and Z.Q. Mao: Electrochemical properties of intermediate-temperature SOFCs based on proton conducting Sm-doped BaCeO3 electrolyte thin film. Solid State Ionics 177, 389 (2006).

    Article  CAS  Google Scholar 

  32. W.A. Meulenberg, J.M. Serra, and T. Schober: Preparation of proton conducting BaCe0.8Gd0.2O3 thin films. Solid State Ionics 177, 2851 (2006).

    Article  CAS  Google Scholar 

  33. T.Z. Wu, R.R. Peng, and C.R. Xia: Sm0.5Sr0.5CoO3−δ-BaCe0.8Sm0.2O3−δ composite cathodes for proton-conducting solid oxide fuel cells. Solid State Ionics 179, 1505 (2008).

    Article  CAS  Google Scholar 

  34. L. Bi, S.Q. Zhang, S.M. Fang, L. Zhang, H.Y. Gao, G.Y. Meng, and W. Liu: In situ fabrication of a supported Ba3Ce1.18Nb1.82O9−δ membrane electrolyte for a proton-conducting SOFC. J. Am. Ceram. Soc. 91, 3806 (2008).

    Article  CAS  Google Scholar 

  35. M. Zunic, L. Chevallier, F. Deganello, A. D'Epifanio, S. Licoccia, E. Di Bartolomeo, and E. Traversa: Electrophoretic deposition of dense BaCe0.9Y0.1O3−x electrolyte thick-films on Ni-based anodes for intermediate temperature solid oxide fuel cells. J. Power Sources 190, 417 (2009).

    Article  CAS  Google Scholar 

  36. L. Bi, Z.T. Tao, W.P. Sun, S.Q. Zhang, R.R. Peng, and W. Liu: Proton-conducting solid oxide fuel cells prepared by a single step co-firing process. J. Power Sources 191, 428 (2009).

    Article  CAS  Google Scholar 

  37. E. Fabbri, S. Licoccia, E. Traversa, and E.D. Wachsman: Composite cathodes for proton conducting electrolytes. Fuel Cells 9, 128 (2009).

    Article  CAS  Google Scholar 

  38. L. Bi, S.Q. Zhang, S.M. Fang, Z.T. Tao, R.R. Peng, and W. Liu: A novel anode supported BaCe0.7Ta0.1Y0.2O3−δ electrolyte membrane for proton-conducting solid oxide fuel cell. Electrochem. Commun. 10, 1598 (2008).

    Article  CAS  Google Scholar 

  39. K. Xie, R.Q. Yan, and X.Q. Liu: Stable BaCe0.7Ti0.1Y0.2O3−δ proton conductor for solid oxide fuel cells. J. Alloys Compd. 479, L40 (2009).

    Article  CAS  Google Scholar 

  40. K. Xie, R.Q. Yan, X.R. Chen, D.H. Dong, S.L. Wang, X.Q. Liu, and G.Y. Meng: A new stable BaCeO3-based proton conductor for intermediate-temperature solid oxide fuel cells. J. Alloys Compd. 472, 551 (2009).

    Article  CAS  Google Scholar 

  41. T. Hibino, A. Hashimoto, M. Suzuki, and M. Sano: A solid oxide fuel cell using Y-doped BaCeO3 with Pd-loaded FeO anode and Ba0.5Pr0.5CoO3 cathode at low temperatures. J. Electrochem. Soc. 149, A1503 (2002).

    Article  CAS  Google Scholar 

  42. L. Bi, S.M. Fang, Z.T. Tao, S.Q. Zhang, R.R. Peng, and W. Liu: Influence of anode pore forming additives on the densification of supported BaCe0.7Ta0.1Y0.2O3-δelectrolyte membranes based on a solid state reaction. J. Eur. Ceram. Soc. 29, 2567 (2009).

    Article  CAS  Google Scholar 

  43. P. Babilo, T. Uda, and S.M. Haile: Processing of yttrium-doped barium zirconate for high proton conductivity. J. Mater. Res. 22, 1322 (2007).

    Article  CAS  Google Scholar 

  44. J.M. Serra and W.A. Meulenberg: Thin-film proton BaZr0.85Y0.15O3 conducting electrolytes: Toward an intermediate-temperature solid oxide fuel cell alternative. J. Am. Ceram. Soc. 90, 2082 (2007).

    Article  CAS  Google Scholar 

  45. D. Pergolesi, E. Fabbri, A. D'Epifanio, E. Di Bartolomeo, A. Tebano, S. Sanna, S. Licoccia, G. Balestrino, and E. Traversa: High proton conduction in grain-boundary-free yttrium-doped barium zirconate films grown by pulsed laser deposition. Nature Mater. 9, 846 (2010).

    Article  CAS  Google Scholar 

  46. Y. Yamazaki, R. Hernandez-Sanchez, and S.M. Haile: High total proton conductivity in large-grained yttrium-doped barium zirconate. Chem. Mater. 21, 2755 (2009).

    Article  CAS  Google Scholar 

  47. S. Imashuku, T. Uda, Y. Nose, G. Taniguchi, Y. Ito, and Y. Awakura: Dependence of dopant cations on microstructure and proton conductivity of barium zirconate. J. Electrochem. Soc. 156, B1 (2009).

    Article  CAS  Google Scholar 

  48. S.J. Stokes and M.S. Islam: Defect chemistry and proton-dopant association in BaZrO3 and BaPrO3. J. Mater. Chem. 20, 6258 (2010).

    Article  CAS  Google Scholar 

  49. F. Iguchi, T. Yamada, N. Sata, T. Tsurui, and H. Yugami: The influence of grain structures on the electrical conductivity of a BaZr0.95Y0.05O3 proton conductor. Solid State Ionics 177, 2381 (2006).

    Article  CAS  Google Scholar 

  50. L. Dong, D.S. Stone, and R.S. Lakes: Viscoelastic sigmoid anomalies in BaZrO3-BaTiO3 near phase transformations due to negative stiffness heterogeneity. J. Mater. Res. 26, 1446 (2011).

    Article  CAS  Google Scholar 

  51. H.G. Bohn and T. Schober: Electrical conductivity of the high-temperature proton conductor BaZr0.9Y0.1O2.95. J. Am. Ceram. Soc. 83, 768 (2000).

    Article  CAS  Google Scholar 

  52. S.B.C. Duval, P. Holtappels, U.F. Vogt, E. Pomjakushina, K. Conder, U. Stimming, and T. Graule: Electrical conductivity of the proton conductor BaZr0.9Y0.1O3−δ obtained by high temperature annealing. Solid State Ionics 178, 1437 (2007).

    Article  CAS  Google Scholar 

  53. A. Tomita, K. Tsunekawa, T. Hibino, S. Teranishi, Y. Tachi, and M. Sano: Chemical and redox stabilities of a solid oxide fuel cell with BaCe0.8Y0.2O3−δ functioning as an electrolyte and as an anode. Solid State Ionics 177, 2951 (2006).

    Article  CAS  Google Scholar 

  54. Y. Yamazaki, R. Hernandez-Sanchez, and S.M. Haile: Cation non-stoichiometry in yttrium-doped barium zirconate: Phase behavior, microstructure, and proton conductivity. J. Mater. Chem. 20, 8158 (2010).

    Article  CAS  Google Scholar 

  55. J.R. Tolchard and T. Grande: Chemical compatibility of candidate oxide cathodes for BaZrO3 electrolytes. Solid State Ionics 178, 593 (2007).

    Article  CAS  Google Scholar 

  56. L. Zhang, S.P. Jiang, W. Wang, and Y.J. Zhang: NiO/YSZ, anode-supported, thin-electrolyte, solid oxide fuel cells fabricated by gel casting. J. Power Sources 170, 55 (2007).

    Article  CAS  Google Scholar 

  57. F. Bozza, R. Polini, and E. Traversa: Electrophoretic deposition of dense Sr- and Mg-doped LaGaO3 electrolyte films on porous La-doped ceria for intermediate temperature solid oxide fuel cells. Fuel Cells 8, 344 (2008).

    Article  CAS  Google Scholar 

  58. G. Fehringer, S. Janes, M. Wildersohn, and R. Clasen: Proton-conducting ceramics as electrode/electrolyte - materials for SOFCs: Preparation, mechanical and thermal-mechanical properties of thermal sprayed coatings, material combination and stacks. J. Eur. Ceram. Soc. 24, 705 (2004).

    Article  CAS  Google Scholar 

  59. M. Asamoto, H. Shirai, H. Yamaura, and H. Yahiro: Fabrication of BaCe0.8Y0.2O3 dense film on perovskite-type oxide electrode substrates. J. Eur. Ceram. Soc. 27, 4229 (2007).

    Article  CAS  Google Scholar 

  60. M. Kakihana: Sol gel preparation of high temperature superconducting oxides. J. Sol-Gel Sci. Technol. 6, 7 (1996).

    Article  CAS  Google Scholar 

  61. M. Veith, S. Mathur, N. Lecerf, V. Huch, T. Decker, H.P. Beck, W. Eiser, and R. Haberkorn: Sol-gel synthesis of nano-scaled BaTiO3, BaZrO3 and BaTi0.5Zr0.5O3 oxides via single-source alkoxide precursors and semi-alkoxide routes. J. Sol-Gel Sci. Technol. 17, 145 (2000).

    Article  CAS  Google Scholar 

  62. A. Sin, B. El Montaser, P. Odier, and F. Weiss: Synthesis and sintering of large batches of barium zirconate nanopowders. J. Am. Ceram. Soc. 85, 1928 (2002).

    Article  CAS  Google Scholar 

  63. A. Magrez and T. Schober: Preparation, sintering, and water incorporation of proton conducting Ba0.99Zr0.8Y0.2O3−δ: Comparison between three different synthesis techniques. Solid State Ionics 175, 585 (2004).

    Article  CAS  Google Scholar 

  64. G. Taglieri, M. Tersigni, P.L. Villa, and C. Mondelli: Synthesis by the citrate route and characterisation of BaZrO3, a high tech ceramic oxide: Preliminary results. Int. J. Inorg. Mater. 1, 103 (1999).

    Article  CAS  Google Scholar 

  65. F.A. Rabuffetti, J.S. Lee, and R.L. Brutchey: Vapor diffusion sol-gel synthesis of fluorescent perovskite oxide nanocrystals. Adv. Mater. 24, 1434 (2012).

    Article  CAS  Google Scholar 

  66. A. D'Epifanio, E. Fabbri, E. Di Bartolomeo, S. Licoccia, and E. Traversa: Design of BaZr0.8Y0.2O3−δ protonic conductor to improve the electrochemical performance in intermediate temperature solid oxide fuel cells (IT-SOFCs). Fuel Cells 8, 69 (2008).

    Article  CAS  Google Scholar 

  67. E. Fabbri, D. Pergolesi, S. Licoccia, and E. Traversa: Does the increase in Y-dopant concentration improve the proton conductivity of BaZr1−xYxO3−δ fuel cell electrolytes? Solid State Ionics 181, 1043 (2010).

    Article  CAS  Google Scholar 

  68. F. Iguchi, T. Tsurui, N. Sata, Y. Nagao, and H. Yugami: The relationship between chemical composition distributions and specific grain boundary conductivity in Y-doped BaZrO3 proton conductors. Solid State Ionics 180, 563 (2009).

    Article  CAS  Google Scholar 

  69. F. Deganello, G. Marcì, and G. Deganello: Citrate–nitrate autocombustion synthesis of perovskite-type nanopowders: A systematic approach. J. Eur. Ceram. Soc. 29, 439 (2009).

    Article  CAS  Google Scholar 

  70. Z.Q. Sun, E. Fabbri, L. Bi, and E. Traversa: Lowering grain boundary resistance of BaZr0.8Y0.2O3−δ with LiNO3 sintering-aid improves proton conductivity for fuel cell operation. Phys. Chem. Chem. Phys. 13, 7692 (2011).

    Article  CAS  Google Scholar 

  71. F. Deganello, L.F. Liotta, G. Marcì, E. Fabbri, and E. Traversa: Strontium and iron-doped barium cobaltite prepared by solution combustion synthesis: Exploring a mixed-fuel approach for tailored intermediate temperature solid oxide fuel cell cathode materials. Mater. Renewable Sustainable Energy 2, 8 (2013).

    Article  Google Scholar 

  72. H.P. Kumar, C. Vijayakumar, C.N. George, S. Solomon, R. Jose, J.K. Thomas, and J. Koshy: Characterization and sintering of BaZrO3 nanoparticles synthesized through a single-step combustion process. J. Alloys Compd. 458, 528 (2008).

    Article  CAS  Google Scholar 

  73. F. Boschini, A. Rulmont, R. Cloots, and B. Vertruyen: Rapid synthesis of submicron crystalline barium zirconate BaZrO3 by precipitation in aqueous basic solution below 100°C. J. Eur. Ceram. Soc. 29, 1457 (2009).

    Article  CAS  Google Scholar 

  74. R.B. Cervera, Y. Oyama, and S. Yamaguchi: Low temperature synthesis of nanocrystalline proton conducting BaZr0.8Y0.2O3−δ by sol-gel method. Solid State Ionics 178, 569 (2007).

    Article  CAS  Google Scholar 

  75. P.A. Stuart, T. Unno, R. Ayres-Rocha, E. Djurado, and S.J. Skinner: The synthesis and sintering behaviour of BaZr0.9Y0.1O3−δ powders prepared by spray pyrolysis. J. Eur. Ceram. Soc. 29, 697 (2009).

    Article  CAS  Google Scholar 

  76. M.M. Bucko and J. Oblakowski: Preparation of BaZrO3 nanopowders by spray pyrolysis method. J. Eur. Ceram. Soc. 27, 3625 (2007).

    Article  CAS  Google Scholar 

  77. S.B.C. Duval, P. Holtappels, U.F. Vogt, U. Stimming, and T. Graule: Characterisation of BaZr0.9Y0.1O3−δ prepared by three different synthesis methods: Study of the sinterability and the conductivity. Fuel Cells 9, 613 (2009).

    Article  CAS  Google Scholar 

  78. B. Robertz, F. Boschini, A. Rulmont, R. Cloots, I. Vandriessche, S. Hoste, and J. Lecomte-Beckers: Preparation of BaZrO3 powders by a spray-drying process. J. Mater. Res. 18, 1325 (2003).

    Article  CAS  Google Scholar 

  79. P. Babilo and S.M. Haile: Enhanced sintering of yttrium-doped barium zirconate by addition of ZnO. J. Am. Ceram. Soc. 88, 2362 (2005).

    Article  CAS  Google Scholar 

  80. S.W. Tao and J.T.S. Irvine: A stable, easily sintered proton-conducting oxide electrolyte for moderate-temperature fuel cells and electrolyzers. Adv. Mater. 18, 1581 (2006).

    Article  CAS  Google Scholar 

  81. S.W. Tao and J.T.S. Irvine: Conductivity studies of dense yttrium-doped BaZrO3 sintered at 1325 °C. J. Solid State Chem. 180, 3493 (2007).

    Article  CAS  Google Scholar 

  82. C. Peng, J. Melnik, J.L. Luo, A.R. Sanger, and K.T. Chuang: BaZr0.8Y0.2O3−δ electrolyte with and without ZnO sintering aid: Preparation and characterization. Solid State Ionics 181, 1372 (2010).

    Article  CAS  Google Scholar 

  83. J.H. Tong, D. Clark, M. Hoban, and R. O'Hayre: Cost-effective solid-state reactive sintering method for high conductivity proton conducting yttrium-doped barium zirconium ceramics. Solid State Ionics 181, 496 (2010).

    Article  CAS  Google Scholar 

  84. D.Y. Gao and R.S. Guo: Structural and electrochemical properties of yttrium-doped barium zirconate by addition of CuO. J. Alloys Compd. 493, 288 (2010).

    Article  CAS  Google Scholar 

  85. J.H. Tong, D. Clark, L. Bernau, M. Sanders, and R. O'Hayre: Solid-state reactive sintering mechanism for large-grained yttrium-doped barium zirconate proton conducting ceramics. J. Mater. Chem. 20, 6333 (2010).

    Article  CAS  Google Scholar 

  86. S.B.C. Duval, P. Holtappels, U. Stimming, and T. Graule: Effect of minor element addition on the electrical properties of BaZr0.9Y0.1O3−δ. Solid State Ionics 179, 1112 (2008).

    Article  CAS  Google Scholar 

  87. C.L. Tsai, M. Kopczyk, R.J. Smith, and V.H. Schmidt: Low temperature sintering of BaZr0.8-xCexY0.2O3−δ using lithium fluoride additive. Solid State Ionics 181, 1083 (2010).

    Article  CAS  Google Scholar 

  88. Z.Q. Sun, E. Fabbri, L. Bi, and E. Traversa: Electrochemical properties and intermediate-temperature fuel cell performance of dense yttrium-doped barium zirconate with calcium addition. J. Am. Ceram. Soc. 95, 627 (2012).

    Article  CAS  Google Scholar 

  89. N. Ito, H. Matsumoto, Y. Kawasaki, S. Okada, and T. Ishihara: Introduction of In or Ga as second dopant to BaZr0.9Y0.1O3−δ to achieve better sinterability. Solid State Ionics 179, 324 (2008).

    Article  CAS  Google Scholar 

  90. L. Bi, E. Fabbri, Z.Q. Sun, and E. Traversa: Sinteractivity, proton conductivity and chemical stability of BaZr0.7In0.3O3−δ for solid oxide fuel cells (SOFCs). Solid State Ionics 196, 59 (2011).

    Article  CAS  Google Scholar 

  91. L. Bi, E. Fabbri, Z.Q. Sun, and E. Traversa: A novel ionic diffusion strategy to fabricate high-performance anode-supported solid oxide fuel cells (SOFCs) with proton-conducting Y-doped BaZrO3 films. Energy Environ. Sci. 4, 409 (2011).

    Article  CAS  Google Scholar 

  92. E. Fabbri, L. Bi, H. Tanaka, D. Pergolesi, and E. Traversa: Chemically stable Pr and Y co-doped barium zirconate electrolytes with high proton conductivity for intermediate-temperature solid oxide fuel cells. Adv. Funct. Mater. 21, 158 (2011).

    Article  CAS  Google Scholar 

  93. E. Fabbri, D. Pergolesi, and E. Traversa: Electrode materials: A challenge for the exploitation of protonic solid oxide fuel cells. Sci. Technol. Adv. Mater. 11, 044301 (2010).

    Article  CAS  Google Scholar 

  94. E. Fabbri, T.K. Oh, S. Licoccia, E. Traversa, and E.D. Wachsman: Mixed protonic/electronic conductor cathodes for intermediate temperature SOFCs based on proton conducting electrolytes. J. Electrochem. Soc. 156, B38 (2009).

    Article  CAS  Google Scholar 

  95. A. Magrasò, C. Frontera, A.E. Gunnaes, A. Tarancon, D. Marrero-Lopez, T. Norby, and R. Haugsrud: Structure, chemical stability and mixed proton-electron conductivity in BaZr0.9−xPrxGd0.1O3−δ. J. Power Sources 196, 9141 (2011).

    Article  CAS  Google Scholar 

  96. A. Magrasò, C. Kjolseth, R. Haugsrud, and T. Norby: Influence of Pr substitution on defects, transport, and grain boundary properties of acceptor-doped BaZrO3. Int. J. Hydrogen Energy 37, 7962 (2012).

    Article  CAS  Google Scholar 

  97. E. Fabbri, I. Markus, L. Bi, D. Pergolesi, and E. Traversa: Tailoring mixed proton-electronic conductivity of BaZrO3 by Y and Pr co-doping for cathode application in protonic SOFCs. Solid State Ionics 202, 30 (2011).

    Article  CAS  Google Scholar 

  98. E. Fabbri, L. Bi, D. Pergolesi, and E. Traversa: High-performance composite cathodes with tailored mixed conductivity for intermediate temperature solid oxide fuel cells using proton conducting electrolytes. Energy Environ. Sci. 4, 4984 (2011).

    Article  CAS  Google Scholar 

  99. V.B. Vert, C. Solis, and J.M. Serra: Electrochemical properties of PSFC-BCYb composites as cathodes for proton conducting solid oxide fuel cells. Fuel Cells 11, 81 (2011).

    Article  CAS  Google Scholar 

  100. F. Zhao, S.W. Wang, K. Brinkman, and F.L. Chen: Layered peroyskite PrBa0.5Sr0.5Co2O5+x as high performance cathode for solid oxide fuel cells using oxide proton-conducting electrolyte. J. Power Sources 195, 5468 (2010).

    Article  CAS  Google Scholar 

  101. L. Chevallier, M. Zunic, V. Esposito, E. Di Bartolomeo, and E. Traversa: A wet-chemical route for the preparation of Ni-BaCe0.9Y0.1O3−δ cermet anodes for IT-SOFCs. Solid State Ionics 180, 715 (2009).

    Article  CAS  Google Scholar 

  102. M. Zunic, L. Chevallier, E. Di Bartolomeo, A. D'Epifanio, S. Licoccia, and E. Traversa: Anode supported protonic solid oxide fuel cells fabricated using electrophoretic deposition. Fuel Cells 11, 165 (2011).

    Article  CAS  Google Scholar 

  103. L. Bi, E. Fabbri, and E. Traversa: Effect of anode functional layer on the performance of proton-conducting solid oxide fuel cells (SOFCs). Electrochem. Commun. 16, 37 (2012).

    Article  CAS  Google Scholar 

  104. L. Bi, E. Fabbri, Z.Q. Sun, and E. Traversa: BaZr0.8Y0.2O3−δ-NiO composite anodic powders for proton-conducting SOFCs prepared by a combustion method. J. Electrochem. Soc. 158, B797 (2011).

    Article  CAS  Google Scholar 

  105. C. Peng, J. Melnik, J.X. Li, J.L. Luo, A.R. Sanger, and K.T. Chuang: ZnO-doped BaZr0.85Y0.15O3-δ proton-conducting electrolytes: Characterization and fabrication of thin films. J. Power Sources 190, 447 (2009).

    Article  CAS  Google Scholar 

  106. Y.M. Guo, Y. Lin, R. Ran, and Z.P. Shao: Zirconium doping effect on the performance of proton-conducting BaZryCe0.8−yY0.2O3−δ (0.0 ≤ y ≤ 0.8) for fuel cell applications. J. Power Sources 193, 400 (2009).

    Article  CAS  Google Scholar 

  107. W.P. Sun, L.T. Yan, Z. Shi, Z.W. Zhu, and W. Liu: Fabrication and performance of a proton-conducting solid oxide fuel cell based on a thin BaZr0.8Y0.2O3−δ electrolyte membrane. J. Power Sources 195, 4727 (2010).

    Article  CAS  Google Scholar 

  108. D. Pergolesi, E. Fabbri, and E. Traversa: Chemically stable anode-supported solid oxide fuel cells based on Y-doped barium zirconate thin films having improved performance. Electrochem. Commun. 12, 977 (2010).

    Article  CAS  Google Scholar 

  109. L. Bi, E. Fabbri, Z.Q. Sun, and E. Traversa: Sinteractive anodic powders improve densification and electrochemical properties of BaZr0.8Y0.2O3−δ electrolyte films for anode-supported solid oxide fuel cells. Energy Environ. Sci. 4, 1352 (2011).

    Article  CAS  Google Scholar 

  110. E. Fabbri, L. Bi, J.L.M. Rupp, D. Pergolesi, and E. Traversa: Electrode tailoring improves the intermediate temperature performance of solid oxide fuel cells based on a Y and Pr co-doped barium zirconate proton conducting electrolyte. RSC Adv. 1, 1183 (2011).

    Article  CAS  Google Scholar 

  111. I. Luisetto, S. Licoccia, A. D’Epifanio, A. Sanson, E. Mercadelli, and E. Di Bartolomeo: Electrochemical performance of spin coated dense BaZr0.8Y0.16Zn0.04O3−δ membrane. J. Power Sources 220, 280 (2012).

    Article  CAS  Google Scholar 

  112. E. Fabbri, A. D'Epifanio, S. Sanna, E. Di Bartolomeo, G. Balestrino, S. Licoccia, and E. Traversa: A novel single chamber solid oxide fuel cell based on chemically stable thin films of Y-doped BaZrO3 proton conducting electrolyte. Energy Environ. Sci. 3, 618 (2010).

    Article  CAS  Google Scholar 

  113. Z.T. Tao, L. Bi, L.T. Yan, W.P. Sun, Z.W. Zhu, R.R. Peng, and W. Liu: A novel single phase cathode material for a proton-conducting SOFC. Electrochem. Commun. 11, 688 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico Traversa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bi, L., Traversa, E. Synthesis strategies for improving the performance of doped-BaZrO3 materials in solid oxide fuel cell applications. Journal of Materials Research 29, 1–15 (2014). https://doi.org/10.1557/jmr.2013.205

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2013.205

Navigation