Skip to main content
Log in

Effects of carbon nanotube fillers dispersion on mechanical behavior of phenolic/carbon nanotube nanocomposite

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Systematic studies have been carried out for investigating the mechanical properties of carbon nanotube (CNT)-reinforced phenolic resin. In this work, phenolic resin/CNT nanocomposite were processed using two different techniques: (i) three-roll calender device (TRC) and (ii) aqueous solution processes. In both techniques, up to 2 wt% CNT was used. In this study, it was observed that the values of tensile strength, Young’s modulus, shear stress, impact resistance and also that of the tribological properties increased directly proportional to carbon nanotube volume content. Halpin-Tsai, Voigt-Reuss and Cox equations were adopted to fit the experimental data of the tensile strength and Young’s modulus of the multiwalled carbon nanotube/phenolic resin composite. Morphological analysis was done utilizing scanning electron microscopy (SEM) and good dispersion of nanotubes within the phenolic resin matrix was revealed. Also according to the results presented in this work, SEM showed that TRC processing gave better dispersion than aqueous solution mixing. The observation that the values for mechanical properties increased more for TRC than aqueous mixed samples is consistent with this.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Table I
Fig. 6
Fig. 7
Table II
Fig. 8

Similar content being viewed by others

References

  1. M. Abdalla, D. Dean, D. Adibempe, E. Nyairo, P. Robinson, and G. Thompson: The effect of interfacial chemistry on molecular mobility and morphology of multiwalled carbon nanotubes epoxy nanocomposite. Polymer 48, 5662–5670 (2007).

    Article  CAS  Google Scholar 

  2. B.P. Grady: Recent development concerning the dispersion of carbon nanotubes in polymer. Macromol. Rapid Commun. 31, 247 (2010).

    Article  CAS  Google Scholar 

  3. R.B. Mathur, B.P. Singh, T.L. Dhami, Y. Kalra, N. Lal, R. Rao, and A.M. Rao: Influence of carbon nanotube dispersion on the mechanical properties of phenolic resin composites. Polym. Compos. 31, 321–327 (2010).

    CAS  Google Scholar 

  4. E. Bekyarova, A. Yu, H. Kim, J. Gao, J. Tang, J. Hahn, T.W. Chou, E.T. Thostenson, M.E. Itkis, and R.C. Haddon: Multiscale carbon nanotube-carbon fiber reinforcement for advanced epoxy composites. Langmuir 23, 3970–3974 (2007).

    Article  CAS  Google Scholar 

  5. N.H. Tai, M.K. Yeh, and J.H. Liu: Enhancement of the mechanical properties of carbon nanotube/phenolic composites using a carbon nanotubes network as the reinforcement. Carbon 42, 2735–2777 (2004).

    Article  Google Scholar 

  6. M.K. Yeh, N.H. Tai, and Y.J. Lin: Mechanical properties of phenolic-based nanocomposites reinforced by multiwalled carbon nanotubes and carbon fibers. Composites Part A 39, 677–684 (2008).

    Article  Google Scholar 

  7. I. Stamatin, A. Morozan, A. Dumitru, V. Ciupina, G. Prodan, J. Niewolski, and H. Figiel: The synthesis of multiwalled carbon nanotubes (MWCNTs) by catalytic pyrolysis of the phenol-formaldehyde resins. Physica E 37, 44–48 (2007).

    Article  CAS  Google Scholar 

  8. S. Bal and S.S. Samal: Carbon nanotube-reinforced polymer composites–A state of the art. Bull. Mater. Sci. 30(4), 379–386 (2007).

    Article  CAS  Google Scholar 

  9. N.H. Tai, M.K. Yeh, and T.H. Peng: Experimental study and theoretical analysis on the mechanical properties of SWNTs/phenolic composites. Composites Part B 39, 926–932 (2008).

    Article  Google Scholar 

  10. K. Tao, S. Yang, C. Grunlon, Y.S. Kim, B. Dang, Y. Deng, R.L. Thomas, B.L. Wilson, and X. Wei: Effects of carbon nanotube fillers on the curing processes of epoxy resin-based composites. J. Appl. Polym. Sci. 102, 5248–5254 (2006).

    Article  CAS  Google Scholar 

  11. S. Amanuel and V.M. Malhotra: Effects of physical confinement (< 125 nm) on the curing behavior of phenolic resin. J. Appl. Polym. Sci. 99, 3183–3186 (2006).

    Article  CAS  Google Scholar 

  12. M.K. Yeh, N.T. Hwa, and J.H. Liu: Mechanical behavior of phenolic-based composites reinforced with multiwalled carbon nanotubes. Carbon 44, 1–9 (2006).

    Article  CAS  Google Scholar 

  13. H.J. Hwang, S.L. Jung, K.H. Cho, and K.H. Jang: Tribological performance of brake friction materials containing carbon nanotubes. Wear 268, 519–525 (2010).

    Article  CAS  Google Scholar 

  14. R.B. Mathur, S. Chatterjee, and B.P. Singh: Growth of carbon nanotubes on carbon fiber substrates to produce hybrid/phenolic composites with improved mechanical properties. Compos. Sci. Technol. 68, 1608–1615 (2008).

    Article  CAS  Google Scholar 

  15. C. Ye, Q.M. Gong, F.P. Lu, and J. Liang: Preparation of carbon nanotubes/phenolic resin-derived activated carbon spheres for the removal of middle molecular weight toxins. Sep. Purif. Technol. 61, 9–14 (2008).

    Article  CAS  Google Scholar 

  16. M.C. Yip and H.Y. Wu: Fatigue and electrical properties of CNT/phenolic composites under moisture-temperature effects. Key Eng. Mater. 334–, 769–772 (2007).

    Article  Google Scholar 

  17. Y.Y. Huang, S.V. Ahir, and E.M. Terentjev: Dispersion rheology of carbon nanotubes in a polymer matrix. Phys. Rev. B 73, 125422–125430 (2006).

    Article  Google Scholar 

  18. M.H. Choi, I.J. Chung, and J.D. Lee: Morphology and curing behaviors of phenolic resin-layered silicate nanocomposites prepared by melt intercalation. Chem. Mater. 12, 2977–2983 (2000).

    Article  CAS  Google Scholar 

  19. I. Szleifer and R. Yerushalmi-Rozen: Polymers and carbon nanotubes–dimensionality, interactions and nanotechnology. Polymer 46, 7803–7818 (2005).

    Article  CAS  Google Scholar 

  20. M. Yoonessi, H. Toghiani, R. Wheeler, L. Porcar, S. Kline, and C.U. Pittman Jr.: Neutron scattering, electron microscopy and dynamic mechanical studies of carbon nanofiber/phenolic resin composites. Carbon 46, 577–588 (2008).

    Article  CAS  Google Scholar 

  21. B. Krause, G. Petzold, S. Pegel, and P. Potschke: Correlation of carbon nanotube dispersibility in aqueous surfactant solutions and polymers. Carbon 47, 602–612 (2009).

    Article  CAS  Google Scholar 

  22. E. Bekyarova, B. Zhao, R. Sen, M.E. Itkis, and R.C. Haddon: Applications of functionalized single-walled carbon nanotubes. J. Am. Chem. Soc. 49(2), 936–941 (2004).

    CAS  Google Scholar 

  23. E.C. Botelho, E. Edwards, T. Burkhart, and B. Bittmann: Dispersing carbon nanotubes into phenolic resin using aqueous solution. J. Braz. Chem. Soc. 22, 2047 (2011).

    Article  Google Scholar 

  24. P. Carballeira: Mechanical and electrical properties of carbon nanofiber-ceramic nanoparticle-polymer composites. Ph.D. Thesis, Technischen Universität Kaiserslautern, Kaiserslautern, Germany, 2010.

    Google Scholar 

  25. J.C. Halpin and J.L. Kardos: The Halpin-Tsai equations: A review. Polym. Eng. Sci. 16(5), 344–352 (1976).

    Article  CAS  Google Scholar 

  26. H. Hocke: Carbon Nanotubes (Bayer SKZ Seminar, Würzburg, 2009).

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support received from FAPESP (under Grant No. 2009/06335-9) and CNPq under Grant No. 306053/2006-3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edson Cocchieri Botelho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Botelho, E.C., Costa, M.L., Edwards, E.R. et al. Effects of carbon nanotube fillers dispersion on mechanical behavior of phenolic/carbon nanotube nanocomposite. Journal of Materials Research 27, 2342–2351 (2012). https://doi.org/10.1557/jmr.2012.221

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.221

Navigation