Skip to main content
Log in

Effects of lattice defects on indentation-induced plasticity initiation behavior in metals

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Plasticity initiation behavior that appears as a pop-in phenomenon on a loading process during indentation-induced deformation was investigated to reveal the effects of lattice defects such as grain boundary and solute element for various metallic materials including Fe alloys through instrumented nanoindentation techniques. The critical load Pc of pop-in on a loading process is lower in the vicinity of the grain boundary than in the grain interior, but the relative hardness of the boundary is equal to or greater than that in grain interior. In-solution Si produces a larger increase in the Pc for both the grain boundary and the grain interior in the Fe–Si alloy than in the interstitial-free steel. The maximum shear stress corresponding to the Pc underneath the indenter is directly proportional to the shear modulus in single crystals with various crystallographic structures. Microstructural effects on the Pc are considered based on some dislocation models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

TABLE I.
FIG. 1.
FIG. 2.
FIG. 3.
TABLE II.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.

Similar content being viewed by others

References

  1. T. Ohmura, T. Hara, and K. Tsuzaki: Relationship between nanohardness and microstructures in high-purity Fe-C as-quenched and quench-tempered martensite. J. Mater. Res. 18, 1465 (2003).

    Article  CAS  Google Scholar 

  2. T. Ohmura, A. Minor, E. Stach, and J.W. Morris Jr.: Dislocation—grain boundary interactions in martensitic steel observed through in-situ nanoindentation in a TEM. J. Mater. Res. 19, 3626 (2004).

    Article  CAS  Google Scholar 

  3. W.W. Gerberich, J.C. Nelson, E.T. Lilleodden, P. Anderson, and J.T. Wyrobek: Indentation induced dislocation nucleation: The initial yield point. Acta Mater. 44, 3585 (1996).

    Article  CAS  Google Scholar 

  4. S.G. Corcoran, R.J. Colton, E.T. Lilleodden, and W.W. Gerberich: Anomalous plastic deformation at surfaces: Nanoindentation of gold single crystals. Phys. Rev. B 55, R16057 (1997).

    Article  CAS  Google Scholar 

  5. D.F. Bahr, D.K. Kramer, and W.W. Gerberich: Non-linear deformation mechanisms during nanoindentation. Acta Mater. 46, 3605 (1998).

    Article  CAS  Google Scholar 

  6. W.W. Gerberich, D.K. Kramer, N.I. Tymiak, A.A. Volinsky, D.F. Bahr, and M.D. Kriese: Nanoindentation-induced defect-interface interactions: Phenomena, methods and limitations. Acta Mater. 47, 4115 (1999).

    Article  CAS  Google Scholar 

  7. S. Suresh, T-G. Nieh, and B.W. Choi: Nano-indentation of copper thin films on silicon substrates. Scr. Mater. 41, 951 (1999).

    Article  CAS  Google Scholar 

  8. A. Gouldstone, H-J. Koh, K-Y. Zeng, A.E. Giannakopoulos, and S. Suresh: Discrete and continuous deformation during nanoindentation of thin films. Acta Mater. 48, 2277 (2000).

    Article  CAS  Google Scholar 

  9. D. Lorenz, A. Zeckzer, U. Hilpert, P. Grau, H. Johansen, and H.S. Leipner: Pop-in effect as homogeneous nucleation of dislocations during nanoindentation. Phys. Rev. B 67, 172101 (2003).

    Article  Google Scholar 

  10. A.M. Minor, E.T. Lilleodden, E.A. Stach, and J.W. Morris Jr.: Direct observations of incipient plasticity during nanoindentation of Al. J. Mater. Res. 19, 176 (2004).

    Article  CAS  Google Scholar 

  11. Y. Shibutani and A. Koyama: Surface roughness effects on the displacement bursts observed in nanoindentation. J. Mater. Res. 19, 183 (2004).

    Article  CAS  Google Scholar 

  12. T. Tsuru, Y. Shibutani, and Y. Kaji: Nanoscale contact plasticity of crystalline metal: Experiment and analytical investigation via atomistic and discrete dislocation models. Acta Mater. 58, 3096 (2010).

    Article  CAS  Google Scholar 

  13. W.A. Soer, K.E. Aifantis, and J.T.M. De Hosson: Incipient plasticity during nanoindentation at grain boundaries in body-centered cubic metals. Acta Mater. 53, 4665 (2005).

    Article  CAS  Google Scholar 

  14. T. Ohmura, K. Tsuzaki, and F. Yin: Nanoindentation-induced deformation behavior in the vicinity of single grain boundary of interstitial-free steel. Mater. Trans. 46, 2026 (2005).

    Article  CAS  Google Scholar 

  15. A.M. Minor, S.A.S. Asif, Z. Shan, E.A. Stach, E. Cyrankowski, T.J. Wyrobek, and O.L. Warren: A new view of the onset of plasticity during the nanoindentation of aluminium. Nat. Mater. 5, 697 (2006).

    Article  CAS  Google Scholar 

  16. T. Ohmura and K. Tsuzaki: Plasticity initiation and subsequent deformation behavior in the vicinity of single grain boundary investigated through nanoindentation technique. J. Mater. Sci. 42, 1728 (2007).

    Article  CAS  Google Scholar 

  17. K. Sekido, T. Ohmura, T. Hara, and K. Tsuzaki: Effect of Dislocation Density on the Initiation of Plastic Deformation on Fe–C Steels. Mater. Trans. 53, 907 (2012).

    Article  CAS  Google Scholar 

  18. M.G. Wang and A.H.W. Ngan: Indentation strain burst phenomenon induced by grain boundaries in niobium. J. Mater. Res. 19, 2478 (2004).

    Article  CAS  Google Scholar 

  19. T.B. Britton, D. Randman, and A.J. Wilkinson: Nanoindentation study of slip transfer phenomenon at grain boundaries. J. Mater. Res. 24, 607 (2009).

    Article  CAS  Google Scholar 

  20. Y. Yoshitomi, S. Suzuki, T. Ueda, S. Tsurekawa, H. Nakashima, and H. Yoshinaga: Grain boundary segregation in <110> symmetrical tilt bicrystals of an Fe-3%Si alloy. Scr. Metall. 32, 1067 (1995).

    Article  CAS  Google Scholar 

  21. W.C. Oliver and G.M. Pharr: Improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  22. K.L. Johnson: Contact Mechanics (Cambridge University Press, Cambridge, UK, 1985) pp. 84–106.

    Book  Google Scholar 

  23. S. Shim, H. Bei, E.P. George, and G.M. Pharr: A different type of indentation size effect. Scr. Mater. 59, 1095 (2008).

    Article  CAS  Google Scholar 

  24. T. Eliash, M. Kazakevich, V.N. Semenov, and E. Rabkin: Nanohardness of molybdenum in the vicinity of grain boundaries and triple junctions. Acta Mater. 56, 5640 (2008).

    Article  CAS  Google Scholar 

  25. J.H. Westbrook: Segregation at grain boundaries. Int. Mater. Rev. 9, 415 (1964).

    CAS  Google Scholar 

  26. G.E. Dieter: Mechanical Metallurgy (McGraw-Hill, New York, 1986) p. 179.

    Google Scholar 

  27. K. Sekido, T. Ohmura, L. Zhang, T. Hara, and K. Tsuzaki: The effect of interstitial carbon on the initiation of plastic deformation of steels. Mater. Sci. Eng., A 530, 396 (2011).

    Article  CAS  Google Scholar 

  28. S.N. Dub, I.K. Zasimchuk, and L.F. Matvienko: Effect of solid solution strengthening by iridium on the nucleation of dislocations in a molybdenum single crystal during nanoindentation. Phys. Solid State 53, 1404 (2011).

    Article  CAS  Google Scholar 

  29. S.N. Dub, Y.Y. Lim, and M.M. Chaudhri: Nanohardness of high purity Cu (111) single crystal: The effect of indenter load and prior plastic sample strain. J. Appl. Phys. 107, 043510 (2010).

    Article  Google Scholar 

  30. B. Sestak and S. Libovicky: Transition to crystallographic slip on Fe-3% Si single crystals at 78K. Acta Metall. 11, 1190 (1963).

    Article  CAS  Google Scholar 

  31. R.C. Boettner and A.J. McEvily Jr.: Fatigue slip band formation in silicon-iron. Acta Metall. 13, 937 (1965).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Prof. Nakashima in Kyusyu University for providing the Fe–Si alloy sample. This work is partially supported by the Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Scientific Research (C) No. 23560852 (2011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Ohmura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohmura, T., Zhang, L., Sekido, K. et al. Effects of lattice defects on indentation-induced plasticity initiation behavior in metals. Journal of Materials Research 27, 1742–1749 (2012). https://doi.org/10.1557/jmr.2012.161

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.161

Navigation