Skip to main content
Log in

Effect of annealing temperature on the electrical characteristics of Ti–Zn–Sn–O thin-film transistors fabricated via a solution process

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Thin-film transistors (TFTs) utilizing a TiZnSnO (TZTO) channel layer were fabricated by using a solution process. The effect of annealing temperature on the device performance of the TZTO TFTs was investigated. TFTs with nanocrystalline TZTO films exhibited a better device performance than those with amorphous TZTO films. The on/off current ratio of the TZTO TFTs annealed at 600 °C was as large as 4.2 × 106. The field-effect mobility (μFE) of 4.1 cm2/Vs and subthreshold swing of 1.2 V/decade were achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
TABLE I.
FIG. 5.
TABLE II.
FIG. 6.

Similar content being viewed by others

References

  1. H. Frenzel, A. Lajn, H. von Wenckstern, M. Lorenz, F. Schein, Z. Zhang, and M. Grundmann: Recent progress on ZnO-based metal-semiconductor field-effect transistors and their application in transparent integrated circuits. Adv. Mater. 22, 5332 (2010).

    Article  CAS  Google Scholar 

  2. U. Ozgur, Ya.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V. Avrutin, S.J. Cho, and H. Morkoc: A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 041301 (2005).

    Article  Google Scholar 

  3. S. Lee and D.C. Paine: On the effect of Ti on the stability of amorphous indium zinc oxide used in thin film transistor applications. Appl. Phys. Lett. 98, 262108 (2011).

    Article  Google Scholar 

  4. H.Q. Chiang, J.F. Wager, R.L. Hoffman, J. Jeong, and D.A. Keszler: High mobility transparent thin-film transistors with amorphous zinc tin oxide channel layer. Appl. Phys. Lett. 86, 013503 (2005).

    Article  Google Scholar 

  5. S.J. Seo, C.G. Choi, Y.H. Hwang, and B.S. Bae: High performance solution-processed amorphous zinc tin oxide thin film transistor. J. Phys. D: Appl. Phys. 42, 035106 (2009).

    Article  Google Scholar 

  6. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono: Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 432, 488 (2004).

    Article  CAS  Google Scholar 

  7. S.Y. Sung, J.H. Choi, U.B. Han, K.C. Lee, J.H. Lee, J.J. Kim, W. Lim, S.J. Pearton, D.P. Norton, and Y.W. Heo: Effects of ambient atmosphere on the transfer characteristics and gate-bias stress stability of amorphous indium-gallium-zinc oxide thin-film transistors. Appl. Phys. Lett. 96, 102107 (2010).

    Article  Google Scholar 

  8. J.K. Jeong, J.H. Jeong, H.W. Yang, J.S. Park, Y.G. Mo, and H.D. Kim: High performance thin film transistors with cosputtered amorphous indium gallium zinc oxide channel. Appl. Phys. Lett. 91, 113505 (2007).

    Article  Google Scholar 

  9. Y. Jeong, K. Song, D. Kim, C.Y. Koo, and J. Moon: Bias stress stability of solution-processed zinc tin oxide thin-film transistors. J. Electrochem. Soc. 156, H808 (2009).

    Article  CAS  Google Scholar 

  10. Y. Jeong, C. Bae, D. Kim, K. Song, K. Woo, H. Shin, G. Cao, and J. Moon: Bias-stress-stable solution-processed oxide thin film transistors. ACS Appl. Mater. Interfaces 2, 611 (2010).

    Article  CAS  Google Scholar 

  11. W.J. Maeng, J.S. Park, H.S. Kim, K.H. Lee, K.B. Park, K.S. Son, T.S. Kim, E.S. Kim, Y.N. Ham, M. Ryu, and S.Y. Lee: Photo and thermal stability enhancement of amorphous Hf-In-Zn-O thin-film transistors by the modulation of back channel composition. Appl. Phys. Lett. 98, 073503 (2011).

    Article  Google Scholar 

  12. B.S. Yang, M.S. Huh, S. Oh, U.S. Lee, Y.J. Kim, M.S. Oh, J.K. Jeong, C.S. Hwang, and H.J. Kim: Role of ZrO2 incorporation in the suppression of negative bias illumination-induced instability in Zn-Sn-O thin film transistors. Appl. Phys. Lett. 98, 122110 (2011).

    Article  Google Scholar 

  13. S.J. Seo, J.H. Jeon, Y.H. Hwang, and B.S. Bae: Improved negative bias illumination instability of sol-gel gallium zinc tin oxide thin film transistors. Appl. Phys. Lett. 99, 152102 (2011).

    Article  Google Scholar 

  14. D.W. Kwon, J.H. Kim, J.S. Chang, S.W. Kim, W. Kim, J.C. Park, I. Song, C.J. Kim, U.I. Jung, and B.G. Park: Temperature effect on negative bias-induced instability of HfInZnO amorphous oxide thin film transistor. Appl. Phys. Lett. 98, 063502 (2011).

    Article  Google Scholar 

  15. Y.S. Rim, D.L. Kim, W.H. Jeong, and H.J. Kim: Effect of Zr addition on ZnSnO thin-film transistors using a solution process. Appl. Phys. Lett. 97, 233502 (2010).

    Article  Google Scholar 

  16. C.H. Ahn, Y.Y. Kim, S.W. Kang, B.H. Kong, S.K. Mohante, H.K. Cho, J.H. Kim, and H.S. Lee: Dependence of oxygen partial pressure on the characteristics of ZnO films grown by radio frequency magnetron sputtering. J. Mater. Sci. - Mater. Electron. 19, 744 (2008).

    Article  CAS  Google Scholar 

  17. M.K. Ryu, S. Yang, S.H.K Park, C.S. Hwang, and J.K. Jeong: High performance thin film transistor with cosputtered amorphous Zn-In-Sn-O channel: Combinatorial approach. Appl. Phys. Lett. 95, 072104 (2009).

    Article  Google Scholar 

  18. K. Song, J. Noh, T. Jun, Y. Jung, H.Y. Kang, and J. Moon: Fully flexible solution-deposited ZnO thin-film transistors. Adv. Mater. 22, 4308 (2010).

    Article  CAS  Google Scholar 

  19. G.H. Kim, W.H. Jeong, B.D. Ahn, H.S. Shin, H.J. Kim, H.J. Kim, M.K. Ryu, K.B. Park, J.B. Seon, and S.Y. Lee: Investigation of the effects of Mg incorporation into InZnO for high-performance and high-stability solution-processed thin film transistors. Appl. Phys. Lett. 96, 163506 (2010).

    Article  Google Scholar 

  20. H.Y. Chong, K.W. Han, Y.S. No, and T.W. Kim: Effect of the Ti molar ratio on the electrical characteristics of titanium-indium-zinc-oxide thin-film transistors fabricated by using a solution process. Appl. Phys. Lett. 99, 161908 (2011).

    Article  Google Scholar 

  21. D.H. Cho, S. Yang, C. Byun, J. Shin, M.K. Ryu, S.H.K Park, C.S. Hwang, S.M. Chung, W.S. Cheong, S.M. Yoon, and H.Y. Chu: Transparent Al-Zn-Sn-O thin film transistors prepared at low temperature. Appl. Phys. Lett. 93, 142111 (2008).

    Article  Google Scholar 

  22. G.H. Kim, H.S. Shin, B.D. Ahn, K.H. Kim, W.J. Park, and H.J. Kim: Formation mechanism of solution-processed nanocrystalline InGaZnO thin film as active channel layer in thin-film transistor. J. Electrochem. Soc. 156, H7 (2009).

    Article  CAS  Google Scholar 

  23. S.J. Seo, Y.H. Hwang, and B.S. Bae: Postannealing process for low temperature processed sol-gel zinc tin oxide thin film transistors. Electrochem. Solid-State Lett. 13, H357 (2010).

    Article  CAS  Google Scholar 

  24. D.W. Kwon, J.H. Kim, J.S. Chang, S.W. Kim, M.C. Sun, G. Kim, H.W. Kim, J.C. Park, I. Song, C.J. Kim, U.I. Jung, and B.G. Park: Charge injection from gate electrode by simultaneous stress of optical and electrical biases in HfInZnO amorphous oxide thin film transistor. Appl. Phys. Lett. 97, 193504 (2010).

    Article  Google Scholar 

  25. J.Y. Kwon, J.S. Jung, K.S. Son, K.H. Lee, J.S. Park, T.S. Kim, J.S. Park, R. Choi, J.K. Jeong, B. Koo, and S. Lee: Investigation of light-induced bias instability in Hf-In-Zn-O thin film transistors: A cation combinatorial approach. J. Electrochem. Soc. 158, H433 (2011).

    Article  CAS  Google Scholar 

  26. G.H. Kim, B.D. Ahn, H.S. Shin, W.H. Jeong, H.J. Kim, and H.J. Kim: Effect of indium composition ratio on solution-processed nanocrystalline InGaZnO thin film transistors. Appl. Phys. Lett. 94, 233501 (2009).

    Article  Google Scholar 

  27. B.S. Ong, C. Li, Y. Li, Y. Wu, and R. Loutfy: Stable, solution-processed, high-mobility ZnO thin-film transistors. J. Am. Chem. Soc. 129, 2750 (2007).

    Article  CAS  Google Scholar 

  28. D.H. Lee, Y.J. Chang, G.S. Herman, and C.H. Chang: A general route to printable high-mobility transparent amorphous oxide semiconductors. Adv. Mater. 19, 843 (2007).

    Article  CAS  Google Scholar 

  29. Y. Choi, G.H. Kim, W.H. Jeong, J.H. Bae, H.J. Kim, J.M. Hong, and J.W. Yu: Carrier-suppressing effect of scandium in InZnO systems for solution-processed thin film transistors. Appl. Phys. Lett. 97, 162102 (2010).

    Article  Google Scholar 

  30. R. Martins, P. Barquinha, I. Ferreira, L. Pereira, G. Goncalves, and E. Fortunato: Role of order and disorder on the electronic performance of oxide semiconductor thin film transistor. J. Appl. Phys. 101, 044505 (2007).

    Article  Google Scholar 

  31. A. Takagi, K. Nomura, H. Ohta, H. Yanagi, T. Kamiya, M. Hirano, and H. Hosono: Carrier transport and electronic structure in amorphous oxide semiconductor, a-InGaZnO4. Thin Solid Films 486, 38 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the Korea Science and Engineering Foundation (KOSEF) grant funded by the Korea government (MEST) (No. 2011-0005119).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ho Seong Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Do, J.C., Kim, H.B., Ahn, C.H. et al. Effect of annealing temperature on the electrical characteristics of Ti–Zn–Sn–O thin-film transistors fabricated via a solution process. Journal of Materials Research 27, 2293–2298 (2012). https://doi.org/10.1557/jmr.2012.138

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.138

Navigation