Skip to main content
Log in

Determination of shear creep compliance of linear viscoelastic solids by instrumented indentation when the contact area has a single maximum

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Lee and Radok [J. Appl. Mech.27, 438 (1960)] derived the solution for the indentation of a smooth rigid indenter on a linear viscoelastic half-space. They had pointed out that their solution was valid only for regimes where contact area did not decrease with time. In this article, a large number of finite element simulations and one typical experiment demonstrate that Lee-Radok solution is approximately valid for the case of reducing contact area. Based on this finding, three semiempirical methods, i.e., Step-Ramp method, Ramp-Ramp method and Sine-Sine method, are proposed for determination of shear creep compliance using the data of both loading and unloading segments. The reliability of these methods is acceptable within certain tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
TABLE I.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.
FIG. 9.

Similar content being viewed by others

References

  1. W.C. Oliver and G.M. Pharr: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  2. A.H.W. Ngan and B. Tang: Viscoelastic effects during unloading in depth-sensing indentation. J. Mater. Res. 17, 2604 (2002).

    Article  CAS  Google Scholar 

  3. G. Feng and A.H.W. Ngan: Effects of creep and thermal drift on modulus measurement using depth-sensing indentation. J. Mater. Res. 17, 660 (2002).

    Article  CAS  Google Scholar 

  4. B. Tang and A.H.W. Ngan: Accurate measurement of tip–sample contact size during nanoindentation of viscoelastic materials. J. Mater. Res. 18, 1141 (2003).

    Article  CAS  Google Scholar 

  5. Y.T. Cheng and C.M. Cheng: Relationships between initial unloading slope, contact depth, and mechanical properties for spherical indentation in linear viscoelastic solids. Mater. Sci. Eng. A 409, 93 (2005).

    Article  Google Scholar 

  6. Y.T. Cheng and C.M. Cheng: General relationship between contact stiffness, contact depth, and mechanical properties for indentation in linear viscoelastic solids using axisymmetric indenters of arbitrary profiles. Appl. Phys. Lett. 87, 111914 (2005).

    Article  Google Scholar 

  7. Y.T. Cheng, W.Y. Ni, and C.M. Cheng: Determining the instantaneous modulus of viscoelastic solids using instrumented indentation measurements. J. Mater. Res. 20, 3061 (2005).

    Article  CAS  Google Scholar 

  8. Y.T. Cheng, C.M. Cheng, and W.Y. Ni: Methods of obtaining instantaneous modulus of viscoelastic solids using displacement-controlled instrumented indentation with axisymmetric indenters of arbitrary smooth profiles. Mater. Sci. Eng. A 423, 2 (2006).

    Article  Google Scholar 

  9. H. Lu, B. Wang, J. Ma, G. Huang, and H. Viswanathan: Measurement of creep compliance of solid polymers by nanoindentation. Mech. Time-Depend. Mater. 7, 189 (2003).

    Article  Google Scholar 

  10. M.L. Oyen: Spherical indentation creep following ramp loading. J. Mater. Res. 20, 2094 (2005).

    Article  CAS  Google Scholar 

  11. M.L. Oyen: Analytical techniques for indentation of viscoelastic materials. Philos. Mag. 86, 5625 (2006).

    Article  CAS  Google Scholar 

  12. C.A. Tweedie and K.J. Van Vliet: Contact creep compliance of viscoelastic materials via nanoindentation. J. Mater. Res. 21, 1576 (2006).

    Article  CAS  Google Scholar 

  13. G. Huang and H. Lu: Measurements of two independent viscoelastic functions by nanoindentation. Exp. Mech. 47, 87 (2006).

    Article  Google Scholar 

  14. M. Vandamme and F. Ulm: Viscoelastic solutions for conical indentation. Int J. Solids Struct. 43, 3142 (2006).

    Article  Google Scholar 

  15. G. Huang and H. Lu: Measurement of Young’s relaxation modulus using nanoindentation. Mech. Time-Depend. Mater. 10, 229 (2007).

    Article  Google Scholar 

  16. J. Mencík and L. Beneš: Determination of viscoelastic properties by nanoindentation. J. Optoelectron. Adv. Mater. 10, 3288 (2008).

    Google Scholar 

  17. Y.T. Cheng and F.Q. Yang: Obtaining shear relaxation modulus and creep compliance of linear viscoelastic materials from instrumented indentation using axisymmetric indenters of power-law profiles. J. Mater. Res. 24, 3013 (2009).

    Article  CAS  Google Scholar 

  18. E.H. Lee and J.R.M. Radok: The contact problem for viscoelastic bodies. J. Appl. Mech. 27, 438 (1960).

    Article  Google Scholar 

  19. S.C. Hunter: The Hertz problem for a rigid spherical indenter and a viscoelastic half-space. J. Mech. Phys. Solids 8, 219 (1960).

    Article  Google Scholar 

  20. G.A.C. Graham: The contact problem in the linear theory of viscoelasticity. Int. J. Eng. Sci. 3, 27 (1965).

    Article  Google Scholar 

  21. T.C.T. Ting: Contact stresses between a rigid indenter and a viscoelastic half-space. J. Appl. Mech. 33, 845 (1966).

    Article  Google Scholar 

  22. J.A. Greenwood: Contact between an axisymmetric indenter and a viscoelastic half-space. Int. J. Mech. Sci. 52, 829 (2010).

    Article  Google Scholar 

  23. ABAQUS (HKS Inc, Pawtucket, RI).

Download references

Acknowledgments

The authors would like to thank Prof. Y-T. Cheng for helpful discussion. The support from NSF of China (Project No. 11025212, 10872200, 11172305, 11021262) is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taihua Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, G., Zhang, T., Feng, Y. et al. Determination of shear creep compliance of linear viscoelastic solids by instrumented indentation when the contact area has a single maximum. Journal of Materials Research 27, 1565–1572 (2012). https://doi.org/10.1557/jmr.2012.120

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.120

Navigation