Skip to main content
Log in

Influence of the deposition temperature on electronic transport and structural properties of radio frequency magnetron-sputtered Zn1-xMgxO:Al and ZnO:Al films

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

ZnO:Al and Zn1-xMgxO:Al films have been deposited by magnetron sputtering from ceramic targets at substrate temperatures from room temperature to 500 °C. We studied the relation between the electronic transport and the structural properties as a function of the deposition temperature. Films with the lowest resistivity (7·10−4 Ω cm for ZnO:Al and 3.6·10−3 Ω cm for Zn1-xMgxO:Al) can be prepared for deposition temperatures around 300 °C. This optimum is accompanied by the highest carrier concentration and the highest Hall mobility. Changes in crystalline quality and free carrier concentration are explained as a result of a bombardment of the films by high energetic negative oxygen ions during growth and by phase segregation for higher deposition temperatures. The dependence of the Hall mobility on the carrier concentration can be explained by grain barrier scattering for n <≈ 5·1020 cm−3 and by ionized impurity scattering for n >≈ 5·1020 cm−3. From the fit of the μ(n) dependence for both materials a trap density at grain boundaries of Nt ≈ 2.3·1013 cm−2 was determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
TABLE I.
FIG. 4.

Similar content being viewed by others

References

  1. D. Ginley, H. Hosono, and D. Paine, eds: Handbook of Transparent Conductors (Springer, New York, 2010).

    Google Scholar 

  2. K. Ellmer and R. Mientus: Carrier transport in polycrystalline transparent conductive oxides: A comparative study of zinc oxide and indium oxide. Thin Solid Films 516, 4620 (2008).

    CAS  Google Scholar 

  3. P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, and M. Powalla: New world record efficiency for Cu(In, Ga)Se(2) thin-film solar cells beyond 20%. Prog. Photovoltaics 19, 894 (2011).

    CAS  Google Scholar 

  4. S. Siebentritt and U. Rau: Cu-Chalcopyrites—Unique materials for thin-film solar cells, In Wide-Gap Chalcopyrites, S. Siebentritt and U. Rau, eds; Springer, Berlin, 2006; p. 1.

  5. P. Baruch, A. Devos, P.T. Landsberg, and J.E. Parrott: On some thermodynamic aspects of photovoltaic solar-energy conversion. Sol. Energy Mater. Sol. Cells 36, 201 (1995).

    CAS  Google Scholar 

  6. S. Siebentritt: Wide gap chalcopyrites: Material properties and solar cells. Thin Solid Films 403, 1 (2002).

    Google Scholar 

  7. U. Rau and M. Turcu: Role of surface band gap widening in Cu(In, Ga)(Se, S)2 thin-films for the photovoltaic performance of ZnO/CdS/Cu(In, Ga)(Se, S)2 heterojunction solar cells, in Compound Semiconductor Photovoltaics, edited by R. Noufi, W.N. Shafarman, D. Cahen, and L. Stolt (Mater. Res. Soc. Symp. Proc. 763, Warrendale, PA, 2003) B8.8, p. 335.

    CAS  Google Scholar 

  8. A. Yamada, K. Matsubara, K. Sakurai, S. Ishizuka, H. Tampo, P.J. Fons, K. Iwata, and S. Niki: Effect of band offset on the open circuit voltage of heterojunction CuIn1-xGaxSe2 solar cells. Appl. Phys. Lett. 85, 5607 (2004).

    CAS  Google Scholar 

  9. T. Minemoto, T. Negami, S. Nishiwaki, H. Takakura, and Y. Hamakawa: Preparation of Zn1-xMgxO films by radio frequency magnetron sputtering. Thin Solid Films 372, 173 (2000).

    CAS  Google Scholar 

  10. W.I. Park, G.C. Yi, and H.M. Jang: Metalorganic vapor-phase epitaxial growth and photoluminescent properties of Zn1-xMgxO(0 ≤ x ≤ 0.49) thin films. Appl. Phys. Lett. 79, 2022 (2001).

    CAS  Google Scholar 

  11. J. Rodriguez-Carvajal: FULLPROF: A Program for Rietveld Refinement and Pattern Matching Analysis, in Abstracts of the Satellite Meeting on Powder Diffraction of the XV Congress of the IUCr (Toulouse, France, 1990) p. 127.

    Google Scholar 

  12. P. Scherrer: Determination of size and structure of colloidal particles by x-ray diffraction. Gött. Nachr 2, 98 (1918).

    Google Scholar 

  13. T.D. Keijser, J. Langford, E. Mittemeijer, and A. Vogels: Use of the Voigt function in a single-line method for the analysis of x-ray diffraction line broadening. J. Appl. Crystallogr. 15, 308 (1982).

    Google Scholar 

  14. T. Minami, T. Miyata, T. Yamamoto, and H. Toda: Origin of electrical property distribution on the surface of ZnO: Al films prepared by magnetron sputtering. J. Vac. Sci. Technol. A 18, 1584 (2000).

    CAS  Google Scholar 

  15. R. Dinnebier and S. Billinge: Principles of powder diffraction, in Powder Diffraction Theory and Practice, edited by R. Dinnebier and S. Billinge (The Royal Society of Chemistry, Cambridge, 2008), p. 19.

  16. M. Chen, Z.L. Pei, X. Wang, C. Sun, and L.S. Wen: Dependence of structural, electrical, and optical properties of ZnO: Al films on substrate temperature. J. Mater. Res. 16, 2118 (2001).

    CAS  Google Scholar 

  17. B. Szyszka: Transparent and conductive aluminum-doped zinc oxide films prepared by mid-frequency reactive magnetron sputtering. Thin Solid Films 351, 164 (1999).

    CAS  Google Scholar 

  18. R. Cebulla, R. Wendt, and K. Ellmer: Al-doped zinc oxide films deposited by simultaneous RF and dc excitation of a magnetron plasma: Relationships between plasma parameters and structural and electrical film properties. J. Appl. Phys. 83, 1087 (1998).

    CAS  Google Scholar 

  19. W. Pies and A. Weiss: b108, II.1.1 Simple oxides, in Landolt-Börnstein - Group III: Crystal and Solid State Physics, Numerical Data and Functional Relationships in Science and Technology, edited by K. Hellwege and A. Hellwege (Springer, Berlin, 1975) p. 40.

  20. K. Ellmer: Electrical properties, in Transparent Conductive Zinc Oxide: Basics and Applications in Thin Film Solar Cells, edited by K. Ellmer, A. Klein, and B. Rech (Springer, Berlin, 2008) p. 35.

  21. K. Ellmer and T. Welzel: Reactive magnetron sputtering of transparent conductive oxide thin films: Role of energetic particle (ion) bombardment. J. Mater. Res. 27(5), 765 (2012).

    CAS  Google Scholar 

  22. H. Windischmann: Intrinsic stress in sputter-deposited thin-films. Crit. Rev. Solid State Mater Sci. 17, 547 (1992).

    Google Scholar 

  23. A. Janotti and C.G. Van de Walle: Fundamentals of zinc oxide as a semiconductor. Rep. Prog. Phys. 72, 126501 (2009).

    Google Scholar 

  24. K. Shirouzu, T. Ohkusa, M. Hotta, N. Enomoto, and J. Hojo: Distribution and solubility limit of Al in Al2O3-doped ZnO sintered body. J. Ceram. Soc. Jpn. 115, 254 (2007).

    CAS  Google Scholar 

  25. S. Cornelius, M. Vinnichenko, N. Shevchenko, A. Rogozin, A. Kolitsch, and W. Moller: Achieving high free electron mobility in ZnO: Al thin films grown by reactive pulsed magnetron sputtering. Appl. Phys. Lett. 94, 042103 (2009).

    Google Scholar 

  26. I. Sieber, N. Wanderka, I. Urban, I. Dorfel, E. Schierhorn, F. Fenske, and W. Fuhs: Electron microscopic characterization of reactively sputtered ZnO films with different Al-doping levels. Thin Solid Films 330, 108 (1998).

    CAS  Google Scholar 

  27. J.P. Han, P.Q. Mantas, and A.M.R Senos: Densification and grain growth of Al-doped ZnO. J. Mater. Res. 16, 459 (2001).

    CAS  Google Scholar 

  28. T. Welzel, T. Dunger, B. Liebig, and F. Richter: Determination of energy modulations of negative oxygen ions during pulsed magnetron sputtering of magnesium oxide. Plasma Sources Sci. Technol. 20, 035020 (2011).

    Google Scholar 

  29. T. Welzel, R. Kleinhempel, T. Dunger, and F. Richter: Ion energy distributions in magnetron sputtering of zinc aluminium oxide. Plasma Process. Polym. 6, S331 (2009).

    CAS  Google Scholar 

  30. D. Depla, S. Heirwegh, S. Mahieu, J. Haemers, and R. De Gryse: Understanding the discharge voltage behavior during reactive sputtering of oxides. J. Appl. Phys. 101, 013301 (2007).

    Google Scholar 

  31. S. Mahieu and D. Depla: Correlation between electron and negative O- ion emission during reactive sputtering of oxides. Appl. Phys. Lett. 90, 121117 (2007).

    Google Scholar 

  32. A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, Y. Yoshida, T. Yasuda, and Y. Segawa: MgxZn1-xO as a II-VI wide-gap semiconductor alloy. Appl. Phys. Lett. 72, 2466 (1998).

    CAS  Google Scholar 

  33. C.X. Wu, Y.M. Lu, D.Z. Shen, and X.W. Fan: Effect of Mg content on the structural and optical properties of Mg (x) Zn(1-x) O alloys. Chin. Sci. Bull. 55, 90 (2010).

    CAS  Google Scholar 

  34. D. Lide, ed: Ionic Radii in Crystals, in CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, 2008) p. 12.11.

    Google Scholar 

  35. A. Leineweber and E.J. Mittemeijer: Anisotropic strain-like line broadening due to composition variations. Adv. X-Ray Anal. 46, 43 (2003).

    CAS  Google Scholar 

  36. K. Ellmer: Resistivity of polycrystalline zinc oxide films: Current status and physical limit. J. Phys. D: Appl. Phys. 34, 3097 (2001).

    CAS  Google Scholar 

  37. G. Masetti, M. Severi, and S. Solmi: Modeling of carrier mobility against carrier concentration in arsenic-doped, phosphorus-doped, and boron-doped silicon. IEEE Trans. Electron. Dev. 30, 764 (1983).

    Google Scholar 

  38. J.Y.W Seto: Electrical properties of polycrystalline silicon films. J. Appl. Phys. 46, 5247 (1975).

    CAS  Google Scholar 

  39. E.H. Sondheimer: The mean free path of electrons in metals. Adv. Phys. 1, 1 (1952).

    Google Scholar 

  40. J.F. Chang and M.H. Hon: The effect of deposition temperature on the properties of Al-doped zinc oxide thin films. Thin Solid Films 386, 79 (2001).

    CAS  Google Scholar 

  41. M. Chen, Z.L. Pei, X. Wang, Y.H. Yu, X.H. Liu, C. Sun, and L.S. Wen: Intrinsic limit of electrical properties of transparent conductive oxide films. J. Phys. D: Appl. Phys. 33, 2538 (2000).

    CAS  Google Scholar 

  42. R. Lipperheide, T. Weis, and U. Wille: Generalized Drude model: Unification of ballistic and diffusive electron transport. J. Phys. Condens. Matter 13, 3347 (2001).

    CAS  Google Scholar 

  43. L. Nordheim: Electron theory of metals. II. Annalen der Physik 401, 641 (1931).

    Google Scholar 

  44. C.H. Seager: Grain-boundaries in polycrystalline silicon. Annu. Rev. Mater. Sci. 15, 271 (1985).

    CAS  Google Scholar 

  45. J. Steinhauser, S. Fay, N. Oliveira, E. Vallat-Sauvain, D. Zimin, U. Kroll, and C. Ballif: Electrical transport in boron-doped polycrystalline zinc oxide thin films. Phys. Status Solidi A 205, 1983 (2008).

    CAS  Google Scholar 

  46. C.B. Alcock, V.P. Itkin, and M.K. Horrigan: Vapor-pressure equations for the metallic elements—298-2500-K. Can. Metall. Q. 23, 309 (1984).

    CAS  Google Scholar 

  47. P. Liley, R. Reid, and E. Buck: Physical and chemical data, in CRC Handbook of Chemistry and Physics, edited by R. Weast and M. Astle (CRC Press, Inc., Florida, 1981/1982) p, 3.147.

  48. T. Suga, S. Kameyama, S. Yoshioka, T. Yamamoto, I. Tanaka, and T. Mizoguchi: Characterization of nanotextured AIN thin films by x-ray absorption near-edge structures. Appl. Phys. Lett. 86, 163113 (2005).

    Google Scholar 

  49. F. Kröger: The Chemistry of Imperfect Crystals (North-Holland Publishing Company, New York, 1974).

    Google Scholar 

  50. S.B. Zhang, S.H. Wei, and A. Zunger: Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO. Phys. Rev. B 63, 075205 (2001).

    Google Scholar 

  51. Y.M. Sun and H.Z. Wang: The electronic properties of native interstitials in ZnO. Physica B 325, 157 (2003).

    CAS  Google Scholar 

  52. P. Erhart, K. Albe, and A. Klein: First-principles study of intrinsic point defects in ZnO: Role of band structure, volume relaxation, and finite-size effects. Phys. Rev. B 73, 205203 (2006).

    Google Scholar 

  53. N. Roberts, R.P. Wang, A.W. Sleight, and W.W. Warren: Al-27 Ga. impurity nuclear magnetic resonance ZnO: Al ZnO: Ga. Phys. Rev. B 57, 5734 (1998).

    CAS  Google Scholar 

Download references

Acknowledgment

We thank the Helmholtz-Zentrum Dresden-Rossendorf (Richard A. Wilhelm) for the assistance during the RBS measurements and Dag Riebisch for performing most of the electrical measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Bikowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bikowski, A., Ellmer, K. Influence of the deposition temperature on electronic transport and structural properties of radio frequency magnetron-sputtered Zn1-xMgxO:Al and ZnO:Al films. Journal of Materials Research 27, 2249–2256 (2012). https://doi.org/10.1557/jmr.2012.113

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2012.113

Navigation