Skip to main content
Log in

Tuning the thermoelectric properties of polycrystalline FeSb2 by the in situ formation of Sb/InSb nanoinclusions

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

As a narrow gap, strongly correlated electron semiconductor, FeSb2 single crystals can exhibit a colossal thermopower1 (on the order of −40,000 μV/K or greater) and a relatively high lattice thermal conductivity2 (over 300 W/m-K) at temperatures around 10 K. In this work, a series of FeSb2 polycrystalline samples with different amounts of additional Indium were prepared by a quench-and-anneal method followed by a spark plasma sintering procedure. The x-ray diffraction, scanning electron microscopy, and elemental analysis verified that the Sb/InSb nanoinclusions were formed in situ on the boundaries of coarse FeSb2 grains. The presence of such nanoinclusions and other as-formed multiscale microstructures can scatter phonons and thus dramatically reduce the corresponding lattice thermal conductivity. Furthermore, the electrical properties can be also improved because of the addition of high mobility carriers from the InSb nanoinclusions. Overall, FeSb2-based materials have shown some promising potential for possible thermoelectric cooling applications at cryogenic temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.

Similar content being viewed by others

REFERENCES

  1. A. Bentien, S. Johnsen, G.K.H. Madsen, B.B. Iversen, and F. Steglich: Colossal Seebeck coefficient in strongly correlated semiconductor FeSb2. Europhys. Lett. 80, 17008 (2007).

    Article  Google Scholar 

  2. P. Sun, N. Oeschler, S. Johnsen, B.B. Iversen, and F. Steglich: Narrow band gap and enhanced thermoelectricity in FeSb2. Dalton Trans. 39, 1012 (2010).

    Article  CAS  Google Scholar 

  3. T.M. Tritt and M.A. Subramanian: thermoelectric materials, phenomena, and applications: a bird’s eye view. MRS Bull. 31, 188 (2006).

    Article  Google Scholar 

  4. T.M. Tritt, Harald Bottner, and Lidong Chen: Thermoelectrics: Direct solar thermal energy conversion. MRS Bull. 33, 336 (2008).

    Article  Google Scholar 

  5. L.E. Bell: Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321, 1457 (2008).

    Article  CAS  Google Scholar 

  6. A. Bentien, G.K.H. Madsen, S. Johnsen, and B.B. Iversen: Experimental and theoretical investigations of strongly correlated FeSb2-xSnx. Phys. Review B 74, 205105 (2006).

    Article  Google Scholar 

  7. P. Sun, N. Oeschler, S. Johnsen, B.B. Iversen, and F. Steglich: FeSb2: Prototype of huge electron-diffusion thermoelectricity. Phys. Review B 79, 153308 (2009).

    Article  Google Scholar 

  8. Y. Sun, S. Johnsen, P. Eklund, M. Sillassen, J. Bottiger, N. Oeschler, P. Sun, F. Steglich, and B.B. Iversen: Thermoelectric transport properties of highly oriented FeSb2 thin films. J. Appl. Phys. 106, 033710 (2009).

    Article  Google Scholar 

  9. W. Xie, X. Tang, Y. Yan, Q. Zhang, and T.M. Tritt: Unique nanostructures and enhanced thermoelectric performance of melt-spun BiSbTe alloys. Appl. Phys. Lett. 94, 102111 (2009).

    Article  Google Scholar 

  10. A.L. Pope, B. Zawilski, and T.M. Tritt: Description of removable sample mount apparatus for rapid thermal conductivity measurements. Cryogenics 41, 725 (2001).

    Article  CAS  Google Scholar 

  11. A.L. Pope, R.T. Littleton IV, and T.M. Tritt: Apparatus for the rapid measurement of electrical transport properties for both “needle-like” and bulk materials. Rev. Sci. Instrum. 72, 3129 (2001).

    Article  CAS  Google Scholar 

  12. V.V. Kosarev, P.V. Tamarin, and S.S. Shalyt: Thermal conductivity of indium antimonide at low temperatures. Phys. Status Solidi B 44, 525 (1971).

    Article  CAS  Google Scholar 

  13. D.L. Rode: Electron transport in InSb, InAs, and InP. Phys. Rev. B 3, 3287 (1971).

    Article  Google Scholar 

  14. G.A. Slack: CRC Handbook of Thermoelectrics (CRC Press, Boca Raton, FL, 1995), p. 407.

    Google Scholar 

  15. C. Kittel: Introduction to Solid State Physics, 8th ed. (John Wiley & Sons, Berkeley, CA, 2005), pp.112–114.

    Google Scholar 

  16. D.G. Cahill, S.K. Watson, and R.O. Pohl: Lower limit to the thermal conductivity of disordered crystals. Phys. Rev. B: Condens. Matter 46, 6131 (1992).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank Dr. Jian He and Dr. Catalina Marinescu in the Department of Physics and Astronomy of Clemson University for their inspired discussions. We would like to acknowledge the financial support from DOE/EPSCoR Implementation Grant (No. DE-FG02-04ER-46139) and SC EPSCoR Office/Clemson University cost sharing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terry M. Tritt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, S., Xie, W., Thompson, D. et al. Tuning the thermoelectric properties of polycrystalline FeSb2 by the in situ formation of Sb/InSb nanoinclusions. Journal of Materials Research 26, 1894–1899 (2011). https://doi.org/10.1557/jmr.2011.86

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2011.86

Navigation