Skip to main content
Log in

Posttreatment of the dry-spun fibers obtained from regenerated silk fibroin aqueous solution in ethanol aqueous solution

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Regenerated silk fibroin (RSF) fibers were directly dry-spun from RSF aqueous solutions into air. To improve mechanical properties of fiber, the as-spun fibers were postdrawn in 80 vol.% ethanol aqueous solution, in which an immersion process was performed subsequently. With the increase in draw ratio, the fibers show substantial improvements of orientation and mechanical properties. Quantitative analysis of Fourier transform infrared spectroscopy indicates that the ratio of β-sheet to α-helix conformation increases sharply at the beginning of immersion process, then approaches a constant value after 90 min of immersion. All fibers exhibit very smooth surfaces. There is no obvious relationship between the pH of the spinning dope and the mechanical properties of the regenerated fibers. The breaking stress of the posttreated fiber is improved up to 301 MPa, which approaches that of degummed silk. The posttreated fiber is over three times the breaking energy of degummed silk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Table I
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Table II
Table III

Similar content being viewed by others

References

  1. J.M. Gosline, M.E. Demont, and M.W. Denny: The structure and properties of spider silk. Endeavour 10, 37 (1986).

    Article  Google Scholar 

  2. D.A. Tirrell: Putting a new spin on spider silk. Science 271, 39 (1996).

    Article  CAS  Google Scholar 

  3. Z.Z. Shao and F. Vollrath: Materials: Surprising strength of silkworm silk. Nature 418, 741 (2002).

    Article  CAS  Google Scholar 

  4. M.R. Huang and X.G. Li: Comparison and review of high performance fibers. J. Textile Res. (Chinese). 18, 62 (1997).

    CAS  Google Scholar 

  5. X.G. Li, M.R. Huang, and Y.M. Hua: Structure and properties of liquid crystalline cellulose and its derivatives materials. J. Tongji Univ. 30, 464 (2002).

    Google Scholar 

  6. F. Vollrath and D.P. Knight: Liquid crystalline spinning of spider silk. Nature 410, 541 (2001).

    Article  CAS  Google Scholar 

  7. H.J. Jin and D.L. Kaplan: Mechanism of silk processing in insects and spiders. Nature 424, 1057 (2003).

    Article  CAS  Google Scholar 

  8. C. Viney: Natural silks: Archetypal supramolecular assembly of polymer fibres. Supramol. Sci. 4, 75 (1997).

    Article  CAS  Google Scholar 

  9. M.A. Wilding and J.W.S. Hearle: Polymeric Materials Encyclopedia, 1st ed. (CRC press, Boca Raton, FL, USA, 1996). pp. 8307, 8322.

    Google Scholar 

  10. C. Vendrely and T. Scheibel: Biotechnological production of spider-silk proteins enables new applications. Macromol. Biosci. 7, 401 (2007).

    Article  CAS  Google Scholar 

  11. E. Metwalli, U. Slotta, C. Darko, S.V. Roth, T. Scheibel, and C.M. Papadakis: Structural changes of thin films from recombinant spider silk proteins upon post-treatment. Appl. Phys. A Mater. 89, 655 (2007).

    Article  CAS  Google Scholar 

  12. J.P. Anderson: Morphology and crystal structure of a recombinant silk-like molecule, SLP4. Biopolymers 45, 307 (1998).

    Article  CAS  Google Scholar 

  13. H. Heslot: Artificial fibrous proteins: A review. Biochimie 80, 19 (1998).

    Article  CAS  Google Scholar 

  14. H. Ishizaka, Y. Watanabe, K. Ishida, and O. Fukumoto: Regenerated silk prepared from ortho phosphoric acid solution of fibroin. Nippon Sanshigaku Zasshi. 58, 87 (1989).

    CAS  Google Scholar 

  15. J.M. Yao, H. Masuda, C.H. Zhao, and T. Asakura: Artificial spinning and characterization of silk fiber from Bombyx mori silk fibroin in hexafluoroacetone hydrate. Macromolecules 35, 6 (2002).

    Article  CAS  Google Scholar 

  16. S.W. Ha, Y.H. Park, and S.M. Hudson: Dissolution of Bombyx mori silk fibroin in the calcium nitrate tetrahydrate-methanol system and aspects of wet spinning of fibroin solution. Biomacromolecules 4, 488 (2003).

    Article  CAS  Google Scholar 

  17. S.W. Ha, A.E. Tonelli, and S.M. Hudson: Structural studies of Bombyx mori silk fibroin during regeneration from solutions and wet fiber spinning. Biomacromolecules 6, 1722 (2005).

    Article  CAS  Google Scholar 

  18. I.C. Um, C.S. Ki, K.H. Lee, D.H. Baek, M. Hattori, D.W. Ihm, and Y.H. Park: Dissolution and wet spinning of silk fibroin using phosphoric acid/formic acid mixture solvent system. J. Appl. Polym. Sci. 105, 1605 (2007).

    Article  Google Scholar 

  19. G.Q. Zhou, Z.Z. Shao, D.P. Knight, J.P. Yan, and X. Chen: Silk fibers extruded artificially from aqueous solutions of regenerated Bombyx mori silk fibroin are tougher than their natural counterparts. Adv. Mater. (Deerfield Beach Fla.) 21, 366 (2009).

    Article  CAS  Google Scholar 

  20. W. Wei, Y.P. Zhang, Y.M. Zhao, H.L. Shao, and X.C. Hu: Dry spinning of regenerated silk fibroin aqueous solution. J. Funct. Polym. (Chinese) 22, 229 (2009).

    CAS  Google Scholar 

  21. W. Wei, Y.P. Zhang, Y.M. Zhao, H.L. Shao, and X.C. Hu: Post-treatment agent and method of dry-spun fibers from regenerated silk fibroin solution. J. Funct. Polym. (Chinese) 23, 230 (2010).

    CAS  Google Scholar 

  22. S.A. Fossey and D.L. Kaplan: Polymer Data Handbook, 1st ed. (Oxford University Press, New York, 1999), pp. 970, 974.

    Google Scholar 

  23. J.Z. Shao, J.H. Zheng, J.Q. Liu, and C.M. Carr: Fourier transform raman and fourier transform infrared spectroscopy studies of silk fibroin. J. Appl. Polym. Sci. 96, 1999 (2005).

    Article  CAS  Google Scholar 

  24. N.V. Bhat and S.M. Ahirrao: Investigation of the structure of silk film regenerated with lithium thiocyanate solution. J. Polym. Sci. A-1: Polym. Chem. 21, 1273 (1983).

    CAS  Google Scholar 

  25. A.B. Mathur, A. Tonelli, T. Rathke, and S. Hudson: The dissolution and characterization of Bombyx mori silk fibroin in calcium nitrate methanol solution and the regeneration of films. Biopolymers 42, 61 (1997).

    Article  CAS  Google Scholar 

  26. M.M.I.R. Khan, H. Morikawa, Y. Gotoh, M. Miura, Z. Ming, Y. Sato, and M. Iwasa: Structural characteristics and properties of Bombyx mori silk fiber obtained by different artificial forcibly silking speeds. Int. J. Biol. Macromol. 42, 264 (2008).

    Article  CAS  Google Scholar 

  27. I.C. Um, C.S. Ki, H.Y. Kweon, K.G. Lee, D.W. Ihm, and Y.H. Park: Wet spinning of silk polymer-II. Effect of drawing on the structural characteristics and properties of filament. Int. J. Biol. Macromol. 34, 107 (2004).

    Article  CAS  Google Scholar 

  28. X. Chen, Z. Shao, N.S. Marinkovic, L.M. Miller, P. Zhou, and M.R. Chance: Conformation transition kinetics of regenerated Bombyx mori silk fibroin membrane monitored by time-resolved FTIR spectroscopy. Biophys. Chem. 89, 25 (2001).

    Article  CAS  Google Scholar 

  29. X. Chen, D.P. Knight, Z.Z. Shao, and F. Vollrath: Conformation transition in silk protein films monitored by time-resolved fourier transform infrared spectroscopy: Effect of potassium ions on Nephila spidroin films. Biochemistry (Moscow) 41, 14944 (2002).

    Article  CAS  Google Scholar 

  30. X. Chen, Z.Z. Shao, D.P. Knight, and F. Vollrath: Conformation transition kinetics of Bombyx mori silk protein. Proteins 68, 223 (2007).

    Article  CAS  Google Scholar 

  31. X. Hu, D. Kaplan, and P. Cebe: Effect of water on the thermal properties of silk fibroin. Thermochim. Acta 461, 137 (2007).

    Article  CAS  Google Scholar 

  32. L.F. Drummy, D.M. Phillips, M.O. Stone, B.L. Farmer, and R.R. Naik: Thermally induced alpha-helix to beta-sheet transition in regenerated silk fibers and films. Biomacromolecules 6, 3328 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Nature Science Foundation of China (50803011), Specialized Research Fund for the Doctoral Program of Higher Education (200802550001), Shanghai Leading Academic Discipline Project (B603), the Fundamental Research Funds for the Central Universities, and Shanghai Pujiang Program (09PJ1400700).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaopeng Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, W., Zhang, Y., Shao, H. et al. Posttreatment of the dry-spun fibers obtained from regenerated silk fibroin aqueous solution in ethanol aqueous solution. Journal of Materials Research 26, 1100–1106 (2011). https://doi.org/10.1557/jmr.2011.47

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2011.47

Navigation