Skip to main content
Log in

A combined dislocation–cohesive zone model for fracture in nanocrystalline materials

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A combined dislocation–cohesive zone model was proposed to describe the fracture toughness of nanocrystalline (nc) materials. In the framework of the model, cohesive stress near crack tip initiates edge dislocations, which move to the opposite grain boundaries. The emitted dislocations provide a shielding effect of the crack. The dependence of both the maximum number of dislocations, emitted by a crack, and the critical stress intensity factor on grain size d (ranging from 20 to100 nm) for Cu was calculated. The calculated results show that (i) nc materials have low fracture toughness, (ii) the critical stress intensity factor decreases with decreased grain size, and (iii) the grain size effect is not high; for instance, increasing the grain size from 20 to 100 nm increases the value of critical stress intensity factor only by 0.035 MPa/m1/2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.

Similar content being viewed by others

REFERENCES

  1. M.A. Meyers, A. Mishra, and D.J. Benson: Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 51, 427 (2006).

    Article  CAS  Google Scholar 

  2. T.D. Shen, C.C. Koch, T.Y. Tsui, and G.M. Pharr: On the elastic moduli of nanocrystalline Fe, Cu, Ni, and Cu–Ni alloys prepared by mechanical milling/alloying. J. Mater. Res. 10, 2892 (1995).

    CAS  Google Scholar 

  3. K.S. Kumar, S. Suresh, and H. Van Swygenhoven: Mechanical behavior of nanocrystalline metals and alloys. Acta Mater. 51, 5743 (2003).

    Article  CAS  Google Scholar 

  4. C.C. Koch: Structural nanocrystalline materials: An overview. J. Mater. Sci. 42, 1403 (2007).

    CAS  Google Scholar 

  5. L. Lu, L.B. Wang, B.Z. Ding, and K. Lu: High-tensile ductility in nanocrystalline copper. J. Mater. Res. 15, 270 (2000).

    Article  CAS  Google Scholar 

  6. M. Dao, L. Lu, R.J. Asaro, J.T.M. De Hosson, and E. Ma: Toward a quantitative understanding of mechanical behavior of nanocrystalline metals. Acta Mater. 55, 4041 (2007).

    CAS  Google Scholar 

  7. Y.G. Liu, J.Q. Zhou, T.D. Shen, and D. Hui: Effects of ultrafine nanograins on the fracture toughness of nanocrystalline materials. J. Mater. Res. 26, 1734 (2011).

    Article  CAS  Google Scholar 

  8. Y.G. Liu, J.Q. Zhou, and X. Ling: Impact of grain size distribution on the multiscale mechanical behavior of nanocrystalline materials. Mater. Sci. Eng., A 527, 1719 (2010).

    Google Scholar 

  9. B. Jiang and G.J. Weng: A generalized self-consistent polycrystal model for the yield strength of nanocrystalline materials. J. Mech. Phys. Solids 52, 1125 (2004).

    CAS  Google Scholar 

  10. I.A. Ovid’ko: Review on the fracture processes in nanocrystalline materials. J. Mater. Sci. 42, 1694 (2007).

    Google Scholar 

  11. J.D. Kuntz, G.D. Zhan, and A.K. Mukherjee: Nanocrystalline-matrix ceramic composite for improved fracture toughness. MRS Bull. 29, 22 (2004).

    Article  CAS  Google Scholar 

  12. Y. Zhao, J. Qian, L.L. Daemen, C. Pantea, J. Zhang, G.A. Voronin, and T.W. Zerda: Enhancement of fracture toughness in nanostructured diamond–SiC composites. Appl. Phys. Lett. 84, 1356 (2004).

    Article  CAS  Google Scholar 

  13. Y.T. Pei, D. Galvan, and J.T.M. De Hosson: Nanostructure and properties of TiC/a-C: H composite coatings. Acta Mater. 53, 4505 (2005).

    Article  CAS  Google Scholar 

  14. A. Singh, L. Tang, M. Dao, L. Lu, and S. Suresh: Fracture toughness and fatigue crack growth characteristics of nanotwinned copper. Acta Mater. 59, 2437 (2011).

    Article  CAS  Google Scholar 

  15. A. Singh, L. Tang, M. Dao, L. Lu, and S. Suresh: Enhanced fracture toughness and strength in bulk nanocrystalline Cu with nanoscale twin bundles. Acta Mater. 57, 6215 (2009).

    Article  CAS  Google Scholar 

  16. R. Mirshams, S.H. Whang, C.H. Xiao, and W.M. Yin: R-curve characterization of the fracture toughness of nanocrystalline nickel thin sheets. Mater. Sci. Eng., A 315, 21 (2001).

    Article  Google Scholar 

  17. M.Y. Gutkin and I.A. Ovid’ko: Homogeneous nucleation of dislocation loops in nanocrystalline metals and ceramics. Acta Mater. 56, 1642 (2008).

    Article  CAS  Google Scholar 

  18. S.V. Bobylev, A.K. Mukherjee, I.A. Ovid’ko, and A.G. Sheinerman: Effects of intergrain sliding on crack growth in nanocrystalline materials. Int. J. Plast. 26, 1629 (2010).

    Article  CAS  Google Scholar 

  19. I.A. Ovid’ko and A.G. Sheinerman: Ductile vs. brittle behavior of pre-cracked nanocrystalline and ultrafine-grained materials. Acta Mater. 58, 5286 (2010).

    Article  CAS  Google Scholar 

  20. Y.G. Liu, J.Q. Zhou, L. Wang, S. Zhang, and Y. Wang: Grain size dependent fracture toughness of nanocrystalline materials. Mater. Sci. Eng., A 528, 4615 (2011).

    Article  CAS  Google Scholar 

  21. S.V. Bobylev, N.F. Morozov, and I.A. Ovid’ko: Cooperative grain boundary sliding and migration process in nanocrystalline solids. Phys. Rev. Lett. 105, 055504 (2010).

    Article  CAS  Google Scholar 

  22. N.F. Morozov, I.A. Ovid’ko, A.G. Sheinerman, and E.C. Aifantis: Special rotational deformation as a toughening mechanism in nanocrystalline solids. J. Mech. Phys. Solids 58, 1088 (2010).

    Article  CAS  Google Scholar 

  23. W. Yang and H.T. Wang: Brittle versus ductile transition of nanocrystalline metals. Int. J. Solids Struct. 45, 3897 (2008).

    Article  CAS  Google Scholar 

  24. F. Yang and W. Yang: Crack growth versus blunting in nanocrystalline metals with extremely small grain size. J. Mech. Phys. Solids 57, 305 (2009).

    Article  CAS  Google Scholar 

  25. A. Needleman: A continuum model for void nucleation by inclusion debonding. J. Appl. Mech. 54, 525 (1987).

    Article  Google Scholar 

  26. V. Tvergaard and J.W. Hutchinson: The relation between crack growth resistance and fracture process parameters in elastic–plastic solids. J. Mech. Phys. Solids 40, 1377 (1992).

    Article  Google Scholar 

  27. V. Tvergaard and J.W. Hutchinson: The influence of plasticity on mixed mode interface toughness. J. Mech. Phys. Solids 41, 1119 (1993).

    Article  Google Scholar 

  28. V. Tvergaard and J.W. Hutchinson: On the toughness of ductile adhesive joints. J. Mech. Phys. Solids 44, 789 (1996).

    Article  CAS  Google Scholar 

  29. H.H.M. Cleveringa, E. van der Giessen, and A. Needleman: A discrete dislocation analysis of mode-I crack growth. J. Mech. Phys. Solids 48, 1133 (2000).

    Article  CAS  Google Scholar 

  30. M.P. O’Day and W.A. Curtin: Bimaterial interface fracture: A discrete dislocation model. J. Mech. Phys. Solids 53, 359 (2005).

    Article  Google Scholar 

  31. A.G. Chng, M.P. O’Day, W.A. Curtin, A.A.O. Tay, and K.M. Lim: Fracture in confined thin films: A discrete dislocation study. Acta Mater. 54, 1017 (2006).

    Article  CAS  Google Scholar 

  32. N.G. Broedling, A. Hartmaier, and H.J. Gao: A combined dislocation–cohesive zone model for fracture in a confined ductile layer. Int. J. Fract. 140, 169 (2006).

    Article  Google Scholar 

  33. N.G. Broedling, A. Hartmaier, and H.J. Gao: Fracture toughness of layered structures: Embrittlement due to confinement of plasticity. Eng. Fract. Mech. 75, 3743 (2008).

    Article  Google Scholar 

  34. T.K. Bhandakkar, A.C. Chng, W.A. Curtin, and H.J. Gao: Dislocation shielding of a cohesive crack. J. Mech. Phys. Solids 58, 530 (2010).

    Article  CAS  Google Scholar 

  35. V.S. Deshpande, A. Needleman, and E. van der Giessen: A discrete dislocation analysis of near-threshold fatigue crack growth. Acta Mater. 49, 3189 (2001).

    Article  CAS  Google Scholar 

  36. V.S. Deshpande, A. Needleman, and E. van der Giessen: Discrete dislocation modeling of fatigue-crack propagation. Acta Mater. 50, 831 (2002).

    Article  CAS  Google Scholar 

  37. D.S. Dugdale: Yielding of steel sheets containing slits. J. Mech. Phys. Solids 8, 100 (1960).

    Article  Google Scholar 

  38. N. Chandra, H. Li, C. Shet, and H. Ghonem: Some issues in the application of cohesive zone models for metal–ceramic interfaces. Int. J. Solids Struct. 39, 2827 (2002).

    Article  Google Scholar 

  39. I. Scheider, M. Rajendran, and A. Banerjee: Comparison of different stress-state dependent cohesive zone models applied to thin-walled structures. Eng. Fract. Mech. 78, 534 (2011).

    Article  Google Scholar 

  40. A.H. Chokshi, A. Rosen, J. Karch, and H. Gleiter: On the validity of the Hall–Petch relationship in nanocrystalline materials. Scr. Metall. Mater. 23, 1679 (1989).

    Article  CAS  Google Scholar 

  41. D.K. Kim and K. Okazaki: Processing of superconducting composite materials by electro-discharge compaction. Mater. Sci. Forum 88, 553 (1992).

    Article  Google Scholar 

  42. T.D. Shen, R.B. Schwarz, S. Feng, J.G. Swadener, J.Y. Huang, M. Tang, J.Z. Zhang, S.C. Vogel, and Y.S. Zhao: Effect of solute segregation on the strength of nanocrystalline alloys: Inverse Hall–Petch relation. Acta Mater. 55, 5007 (2007).

    Article  CAS  Google Scholar 

  43. G. Palumbo, U. Erb, and K.T. Aust: Triple line disclination effects on the mechanical behaviour of materials. Scr. Metall. Mater. 24, 2347 (1990).

    Article  CAS  Google Scholar 

  44. T.Y. Zhang and J.C.M. Li: Image forces and shielding effects of an edge dislocation near a finite length crack. Acta Metall. Mater. 39, 2739 (1991).

    Article  CAS  Google Scholar 

  45. I.H. Lin and R. Thomson: Cleavage, dislocation emission, and shielding for cracks under general loading. Acta Metall. 34, 187 (1986).

    Article  CAS  Google Scholar 

  46. I.A. Ovid’ko: Deformation and diffusion modes in nanocrystalline materials. Int. Mater. Rev. 50, 65 (2005).

    Article  CAS  Google Scholar 

  47. Y.G. Liu, J.Q. Zhou, T.D. Shen, and D. Hui: Grain rotation dependent fracture toughness of nanocrystalline materials. Mater. Sci. Eng., A 528, 7684 (2011).

    Article  CAS  Google Scholar 

  48. H. Li and F. Ebrahimi: Transition of deformation and fracture behaviors in nanostructured face-centered-cubic metals. Appl. Phys. Lett. 84, 4307 (2004).

    Article  CAS  Google Scholar 

  49. H. Li and F. Ebrahimi: Ductile-to-brittle transition in nanocrystalline metals. Adv. Mater. 17, 1969 (2005).

    Article  CAS  Google Scholar 

  50. F. Ebrahimi, A.J. Liscano, D. Kong, Q. Zhai, and H. Li: Fracture of bulk face centered cubic metallic nanostructures. Rev. Adv. Mater. Sci. 13, 33 (2006).

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful for the funding of the National Natural Science Foundation of China (10502025 and 10872087), Natural Science Foundation of Jiangsu Province (BK2007528), Key Project of Chinese Ministry of Education (211061), Natural Science Foundation of Hubei Province, and Research and Innovation Projects Foundation of University Postgraduate of Jiangsu Province (CX10B_167Z).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianqiu Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Zhou, J. & Shen, T. A combined dislocation–cohesive zone model for fracture in nanocrystalline materials. Journal of Materials Research 27, 694–700 (2012). https://doi.org/10.1557/jmr.2011.442

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2011.442

Navigation