Skip to main content
Log in

Synthesis of novel core–shell structural AuNR@MCM-41 for infrared light-driven release of drug

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The hexagonal mesoporous silica MCM-41 nanospheres with Au nanorods (AuNRs) as core have been synthesized via a modified Stöber method by a process of hydration and condensation of tetraethoxysilane in a water–ethanol mixture. The AuNR@MCM-41 nanocomposites combine the photothermal characteristic with the mesopore of MCM-41 in one body. We utilized these core–shell materials for ibuprofen encapsulation and release in the simulated body fluid (pH 7.4) for the first time. The results certificated AuNR@MCM-41 nanocomposites as novel dual-functional materials could realize the light-driven release of drug due to the photothermal effect of the AuNRs. Such novel nanomaterials offer a new way for cancer treatment which combine hyperthermia with the chemotherapeutic drugs by synergistic effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

SCHEME 1
FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.

Similar content being viewed by others

References

  1. B.G. Trewyn, S. Giri, I.I. Slowing, and V.S.Y Lin: Mesoporous silica nanoparticle based controlled release, drug delivery, and biosensor systems. Chem. Commun. 31, 3236 (2007).

    Article  Google Scholar 

  2. A.M. Smith, H. Duan, A.M. Mohs, and S. Nie: Bioconjugated quantum dots for in vivo molecular and cellular imaging. Adv. Drug Delivery Rev. 60, 1226 (2008).

    Article  CAS  Google Scholar 

  3. J.R. McCarthy and R. Weissleder: Multifunctional magnetic nanoparticles for targeted imaging and therapy. Adv. Drug Delivery Rev. 60, 1241 (2008).

    Article  CAS  Google Scholar 

  4. K. Park, S. Lee, E. Kang, K. Kim, K. Choi, and I.C. Kwon: New generation of multifunctional nanoparticles for cancer imaging and therapy. Adv. Funct. Mater. 19, 1553 (2009).

    Article  CAS  Google Scholar 

  5. T. Maschmeyer, F. Rey, G. Sankar, and J.M. Thomas: Heterogeneous catalysts obtained by grafting metallocene complexes onto mesoporous silica. Nature 378, 159 (1995).

    Article  CAS  Google Scholar 

  6. A. Corma: From microporous to mesoporous molecular sieve materials and their use in catalysis. Chem. Rev. 97, 2373 (1997).

    Article  CAS  Google Scholar 

  7. A. Corma, M.S. Galletero, H. Garcia, E. Palomares, and F. Rey: Pyrene covalently anchored on a large external surface area zeolite as a selective heterogeneous sensor for iodide. Chem. Commun.. 2, 1100 (2002).

    Article  Google Scholar 

  8. T. Nguyen, J. Wu, V. Doan, B.J. Schwartz, and S.H. Tolbert: Control of energy transfer in oriented conjugated polymer-mesoporous silica composites. Science 288, 652 (2000).

    Article  CAS  Google Scholar 

  9. R. Hernandez, H. Tseng, J.W. Wong, J.F. Stoddart, and J.I. Zink: An operational supramolecular nanovalve. J. Am. Chem. Soc. 126, 3370 (2004).

    Article  CAS  Google Scholar 

  10. S. Angelos, Y. Yang, K. Patel, J.F. Stoddart, and J.I. Zink: pH-Responsive supramolecular nanovalves based on cucurbit[6]uril pseudorotaxanes. Angew. Chem. Int. Ed. 47, 2222 (2008).

    Article  CAS  Google Scholar 

  11. K.C.F Leung, T.D. Nguyen, J.F. Stoddart, and J.I. Zink: Supramolecular nanovalves controlled by proton abstraction and competitive binding. Chem. Mater. 18, 5919 (2006).

    Article  CAS  Google Scholar 

  12. D.P. Ferris, Y. Zhao, N.M. Khashab, H.A. Khatib, J.F. Stoddart, and J.I. Zink: Light-operated mechanized nanoparticles. J. Am. Chem. Soc. 131, 1686 (2009).

    Article  CAS  Google Scholar 

  13. C. Lai, B.G. Trewyn, D.M. Jeftinija, K. Jeftinija, S. Xu, S. Jeftinija, and V.S.Y Lin: A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules. J. Am. Chem. Soc. 125, 4451 (2003).

    Article  CAS  Google Scholar 

  14. N.K. Mal, M. Fujiwara, and Y. Tanaka: Photocontrolled reversible release of guest molecules from coumarin-modified mesoporous silica. Nature 421, 350 (2003).

    Article  CAS  Google Scholar 

  15. R. Weissleder: A clearer vision for in vivo imaging. Nat. Biotechnol. 19, 316 (2001).

    Article  CAS  Google Scholar 

  16. S. Link and M.A. El-Sayed: Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. Int. Rev. Phys. Chem. 19, 409 (2000).

    Article  CAS  Google Scholar 

  17. X. Huang, I.H. El-Sayed, W. Qian, and M.A. El-Sayed: Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J. Am. Chem. Soc. 128, 2115 (2006).

    Article  CAS  Google Scholar 

  18. C. Kim, P. Ghosh, and V.M. Rotello: Multimodal drug delivery using gold nanoparticles. Nanoscale 1, 61 (2009).

    Article  CAS  Google Scholar 

  19. C.K. Kim, P. Ghosh, C. Pagliuca, Z. Zhu, S. Menichetti, and V.M. Rotello: Entrapment of hydrophobic drugs in nanoparticle monolayers with efficient release into cancer cells. J. Am. Chem. Soc. 131, 1360 (2009).

    Article  CAS  Google Scholar 

  20. W. Stober, A. Fink, and E. Bohn: Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 26, 62 (1968).

    Article  Google Scholar 

  21. I. Gorelikov and N. Matsuura: Single-step coating of mesoporous silica on cetyltrimethyl ammonium bromide-capped nanoparticles. Nano Lett. 8, 369 (2008).

    Article  CAS  Google Scholar 

  22. C.J. Murphy, T.K. Sau, A.M. Gole, C.J. Orendorff, J. Gao, L. Gou, S.E. Hunyadi, and T. Li: Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications. J. Phys. Chem. B 109, 13857 (2005).

    Article  CAS  Google Scholar 

  23. C.J. Murphy, A.M. Gole, S.E. Hunyadi, and C.J. Orendorff: One-dimensional colloidal gold and silver nanostructures. Inorg. Chem. 45, 7544 (2006).

    Article  CAS  Google Scholar 

  24. K. Yano and Y. Fukushima: Particle size control of mono-dispersed super-microporous silica spheres. J. Mater. Chem. 13, 2577 (2003).

    Article  CAS  Google Scholar 

  25. H. Cong, R. Toftegaard, J. Arnbjerg, and P.R. Ogilby: Silica-coated gold nanorods with a gold overcoat: Controlling optical properties by controlling the dimensions of a gold−silica−gold layered nanoparticle. Langmuir 26, 4188 (2010).

    Article  CAS  Google Scholar 

  26. S. Link and M.A. El-Sayed: Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J. Phys. Chem. B 103, 8410 (1999).

    Article  CAS  Google Scholar 

  27. J. Andersson, J. Rosenholm, S. Areva, and M. Linden: Influences of material characteristics on ibuprofen drug loading and release profiles from ordered micro- and mesoporous silica matrices. Chem. Mater. 16, 4160 (2004).

    Article  CAS  Google Scholar 

  28. M. Vallet-Regi, A. Ramila, R.P. Del Real, and J. Perez-Pariente: A new property of MCM-41: Drug delivery system. Chem. Mater. 13, 308 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the National Science Fund for Distinguished Young Scholars of China (Grant No. 60925018) and the National Natural Science Foundation of China (Grant Nos. 20971051 and 51002062).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biao Dong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, L., Dong, B., Jiang, Z. et al. Synthesis of novel core–shell structural AuNR@MCM-41 for infrared light-driven release of drug. Journal of Materials Research 26, 2414–2419 (2011). https://doi.org/10.1557/jmr.2011.292

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2011.292

Navigation