Skip to main content

Advertisement

Log in

Phase transformation of poly (vinylidene difluoride) in energy harvesting

  • Invited Feature Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The poly (vinylidene difluoride) (PVDF) has been of great interest for energy conversion of microelectromechanical system devices. A semicrystalline polymer, the PVDF has five crystallo-graphic forms, α, β, γ, δ, and ϵ. The latter four structures exhibit a permanent dipole moment. In this research, we investigated effects of microstructures of the PVDF on its piezoelectricity for energy harvesting. Using various experimental techniques, we observed the power density generated by a mechanical force that was correlated with the phase transformation between amorphous, α, β, and γ phases. The transformation was time-dependent in a nonlinear manner. Such transformation influences the energy transition and storage of small devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I
Fig. 1
Fig. 2
Table II
Table III
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H. Kawaii: The piezoelectricity of polyvinylidene fluoride. Jpn. J. Appl. Phys. 8, 975 (1969).

    Article  Google Scholar 

  2. E.L. Nix and I.M. Ward: The measurement of the shear piezoelectric coefficients of polyvinylidene fluoride. Ferroelectrics 67, 137 (1986).

    Article  CAS  Google Scholar 

  3. M.G. Broadurst, C.G. Mimerg, F.I. Mopsik, and W.P. Harris: Piezo- and pyroelectricity in polymer electrets, Electrets: Charge Storage and Transport in Dieelectrics, edited by M.M. Perlman (The Electrochemical Society, Inc., Princeton, NJ, 1973), pp. 492–504.

    Google Scholar 

  4. M.G. Broadhurst, W.P. Harris, F.I. Mopsik, and C.G. Malmberg: Piezoelectricity, pytroelectricity and electrostriction in polymers, Prepr. Amer. Chem. Soc. Div., Poly Chem. 14, 820 (1973).

    CAS  Google Scholar 

  5. F.I. Mopsik and M.G. Broadhurst: Molecular dipole electrets. J. Appl. Phys. 46, 4204 (1975).

    Article  Google Scholar 

  6. R. Hayakawa and Y. Wada: Piezoelectricity and related properties of polymer films. Adv. Polym. Sci. 11, 1 (1973).

    Article  CAS  Google Scholar 

  7. M.B. Broadhurst, G.T. Davis, J.E. McKiney, and E. Collins: Piezoelectricity and pyroelectricity in polyvinliden fluoride: A model. J. Appl. Phys. 49, 4992 (1978).

    Article  CAS  Google Scholar 

  8. T. Furukawa, J.X. Wen, K. Suzuki, T. Takashina, and M. Date: Piezoelectricity and pyroelectricity in vinylidene fluoride/ trifluoroehylene copolymers. J. Appl. Phys. 25, 1178 (1986).

    Article  CAS  Google Scholar 

  9. E. Fukada: History and recent progresss in piezoelectric polymers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47(6), 1277 (2000).

    Article  CAS  Google Scholar 

  10. H. Ohigashi and R. Shigenari: Jpn. Patent Application 47 128115, 1972.

    Google Scholar 

  11. H. Sussner, D. Michas, A. Assflay, S. Hunklinger, and K. Dransfeld: Piezoelectric effect in polyvinylidene fluride at high frequencies. Phys. Lett. A 45, 475 (1973).

    Article  CAS  Google Scholar 

  12. J.M. Powers: Long Range Hydrophones, The Applications of Ferroelectric Polymers, edited by T.T. Wang, J.M. Herbert, and A.M. Glass (Glasgov, Scotland, Blackie, 1988), pp. 118–161.

  13. M. Tamura, T. Yamaguchi, T. Oyaba, and T. Yoshimi: Electro-acoustic transducers with piezoelectric high polymer films. J. Audio Eng. Soc. 23, 21 (1975).

    Google Scholar 

  14. E. Yamaka: Pyroelectric devices, The Application of Ferroeletric Polymers, edited by T.T. Wang, M. Herert, and A.M. Glass (Glasgov, Scotland, Blackie, 1988), pp. 29–348.

  15. H-B. Fang, J-Q. Liu, Z-Y. Xu, L. Dong, L. Wang, D. Chen, B-C. Cai, and Y. Liu: Fabrication and performance of MEMS-based piezoelectric power generator for vibration energy harvesting. Microelectron. J. 37(11), 1280 (2006).

    Article  Google Scholar 

  16. J. Sohn, J.S. Choi, and D. Lee: An investigation on piezoelectric energy harvesting for MEMS power sources. Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci. 219(4), 429 (2005).

    Article  Google Scholar 

  17. C.B. Williams and R.B. Yates: Analysis of a micro-electric generator for microsystems. Sens. Actuators, A 52(1–3), 8 (1996).

    Article  CAS  Google Scholar 

  18. N.E. Dutoit, B.L. Wardle, and S-G. Kim: Design considerations for MEMS-scale piezoelectric mechanical vibration energy harvesters. Integr. Ferroelectr. 71(1), 121 (2005).

    Article  CAS  Google Scholar 

  19. E. Hausler and E. Stein: Implantable physiological power supply with PVDF film. Ferroelectrics 60, 277 (1984).

    Article  Google Scholar 

  20. J. Curie and P. Curie: Comput. Rend. Acad. Sci., 91, 294 (1880). English translation by W.F. Magie, A Source Book in Physics (Harvard University, Cambridge, MA, 1963), pp. 548-549.

    Google Scholar 

  21. M. Curie, P. Curie, C. Kellog, and V. Kellogg: With the Autobiographical Notes of Marie Curie (transl.) (Macmillan, New York, 1923) (reprinted Dover, New York, 1963), pp. 20–2

    Google Scholar 

  22. M. Bruzau: Piezoelectric substances. Elec. Commun. 23, 445 (1947).

    CAS  Google Scholar 

  23. G. Gautschi: Piezoelectric Sensorics (Springer, Berlin, 2002).

    Book  Google Scholar 

  24. T.T. Wang, J.M. Herbert, and A.M. Glass: The Applications of Ferroelectric Polymer (Blackie, New York, 1988).

    Google Scholar 

  25. A. Arnau: Piezoelectric Transducers and Applications (Springer, Berlin, 2004).

    Book  Google Scholar 

  26. J. Singh: Smart Electronic Materials (Cambridge University Press, Cambridge, 2005).

    Book  Google Scholar 

  27. M. Yoo, C.W. Frank, S. Mori, and S. Yamaguchi: Interaction of Poly(vinylidene fluoride) with Graphite Particles. 1. Surface Morphology of a Composite Film and Its Relation to Processing Parameters. Chem. Mater. 16, 1945 (2004).

    Article  CAS  Google Scholar 

  28. H. Lee, B. Mika, R. Cooper, and H. Liang: Nanoscale investigation of microstructure-piezoelectricity-surface force relations, in Proc. STLE/ASME Int. Trib. Conf, San Diego, CA, 2007.

    Google Scholar 

  29. B. Mika, H. Lee, J.M. Gonzalez, S.B. Vinson, and H. Liang: Studying insect motion with piezoelectric sensors, in Proceedings ofSPIE Conference, Nanosensors, Microsensors, and Biosensors and Systems, edited by V.K. Varadan, Vol. 6528, April, 2007, p. 652817.

    Article  Google Scholar 

  30. T. Jee, H. Lee, B. Mika, and H. Liang: Effects of microstructures of PVDF on surface adhesive forces. Tribol. Lett. 26(2), 125 (2007).

    Article  CAS  Google Scholar 

  31. H. Lee, R. Cooper, K. Wang, and H. Liang: Nano-scale characterization of a piezoelectric polymer (polyvinylidene difluoride, PVDF). Sensors 8(11), 7359 (2008).

    Article  CAS  Google Scholar 

  32. J. Yi and H. Liang: Modeling of a PVDF-based deformation and motion sensor. IEEE J. Sens. 8(4), 384 (2008).

    Article  Google Scholar 

  33. H. Lee, R. Cooper, B. Mika, D. Clayton, R. Garg, J.M. Gonzalez, S. B. Vinson, S. Khatri, and H. Liang: Polymeric sensors to monitor cockroach locomotion. IEEE J. Sens. 7(12), 1698 (2007).

    Article  Google Scholar 

  34. K. Wang, H. Lee, R. Cooper, and H. Liang: Time-resolved, stress-induced, and anisotropic phase transformation of a piezoelectric polymer. Appl. Phys., A: Mater. Sci. Process. 95, 435 (2009).

    Article  CAS  Google Scholar 

  35. T.T. Wang, J.M. Herbert, and A.M. Glass: The Applications of Ferroelectric Polymer (Blackie, New York, 1988).

    Google Scholar 

  36. R. Hasegawa, Y. Takahashi, Y. Chatani, and H. Tadakoro: Crystal structures of three crystalline forms of poly (vinylidene fluoride). Polym. J. 2, 600 (1972).

    Article  Google Scholar 

  37. M.A. Bachman and J.B. Lando: A reexamination of the crystal structure of phase II of poly (vinylidene fluoride). Macromolecules 14, 40 (1981).

    Article  Google Scholar 

  38. S. Weinhold, M.H. Litt, and J.B. Lando: Human powered piezoelectric batteries to supply power to wearable electronic devices. Macromolecules 13, 1178 (1980).

    Article  CAS  Google Scholar 

  39. J.L. Gonzalez, A. Rubio, and F. Moll: Human powered piezoelectric batteries to supply power to wearable electronic devices. Int. J. Soc. Mater. Eng. Resour. 10, 34 (2002).

    Article  Google Scholar 

  40. E. Hausler and E. Stein: Implantable physiological power supply with PVDF film. Ferroelectrics 60, 277 (1984).

    Article  Google Scholar 

  41. M.J. Ramsey and W.W. Clark: Piezoelectric energy harvesting for bio MEMS applications, in Proceedings SPIE 8th Annual Smart Materials and Structures Conference, Vol. 4332-2001, Newport Beach, CA, 2001, pp. 29–138.

    Google Scholar 

  42. T. Curtin, J. Bellingham, J. Catopovic, and D. Wedd: Autonomous oceanographic sampling networks. Oceanography (Wash. DC) 6(3), 86 (1993).

    Article  Google Scholar 

  43. G.W. Taylor, R.R. Burns, S.M. Kammann, W.B. Powers, and T.R. Welsh: The energy harvesting, Eel: A small subsurface ocean/river power generator. IEEE J. Oceanic Eng. 26(4), 539 (2001).

    Article  Google Scholar 

  44. R.B. Williams, G. Park, D. J. Inman, and W.K. Wilkie: An overview of composite actuators with piezoceramic fibers, in Proceedings IMAC-XX: Conference on Structural Dynamics, Los Angeles, CA, 2002.

    Google Scholar 

  45. R.B. Cass, A. Khan, and F. Mohammadi: Innovative ceramic-fiber technology energizes advanced ceramics. Am. Ceram. Soc. Bull. 82, 14 (2003).

    CAS  Google Scholar 

  46. F. Mohammadi, A. Khan, and R.B. Cass: Power generation from piezoelectric lead zirconate titanate fiber composites, in Electronics on Unconventional Substrates-Electrotextiles and Giant-Area Flexible Circuits, edited by M.S. Shur, P.M. Wilson, and D. Urban (Mater. Res. Soc. Symp. Proc. 736, Warrendale, PA, 2003), D5.5, p. 263.

    Google Scholar 

  47. S. Mani, R. Perez, H. Lee, Z. Ounaies, W. Hung, and H. Liang: Effects of applied potential on friction of a piezoelectric material. J. Tribol. 129(4), 836 (2007).

    Article  CAS  Google Scholar 

  48. V. Kochervinskii: Piezoelectricity in crystallizing ferroelectric polymers: Poly(vinylidene fluoride) and its copolymers (A review). Crystallogr. Rep. 48(4), 649 (2003).

    Article  CAS  Google Scholar 

  49. J. Sirohi and I. Chopra: Fundamental understanding of piezoelectric strain sensors. J. Intell. Mater. Syst. Struct. 11(4), 246 (2000).

    Article  CAS  Google Scholar 

  50. Z-Y. Wang, H-Q. Fan, K-H. Su, X. Wang, and Z-Y. Wen: Structure, phase transition and electric properties of poly(vinyli-dene fluoride-trifluoroethylene) copolymer studied with density-functional theory. Polymer (Guildf.) 48(11), 3226 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Assistance by Taekwon Jee, Hyungoo Lee, and Ke Wang was appreciated. The authors wish to acknowledge the support by the National Science Foundation (NSF) (0515930).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Liang.

Additional information

This paper has been selected as an Invited Feature Paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, H., Cooper, R. & Files, J. Phase transformation of poly (vinylidene difluoride) in energy harvesting. Journal of Materials Research 26, 1–8 (2011). https://doi.org/10.1557/jmr.2010.81

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2010.81

Navigation