Skip to main content
Log in

Crystallization kinetics of Si3N4 in Si−B−C−N polymer-derived ceramics

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

To study the crystallization kinetics of β-Si3N4 in Si–B–C–N polymer-derived ceramics, the amorphous ceramics with composition SiC1.6N1.0B0.4 were synthesized and then isothermally annealed at 1700, 1775 and 1850 °C. The integrated intensities of β-Si3N4 x-ray diffraction (XRD) patterns were used to examine the course of crystallization. The average size of the Si3N4 nanocrystallites was analyzed by means of the XRD measurements and energy-filtering transmission electron microscopy. It was realized that the nanocrystallite dimensions change insignificantly within the time period of crystallization; however, they depend significantly on the temperature. Subsequently, the kinetics of the β-Si3N4 crystallization was analyzed. Consequently, large activation energy in the range of 11.5 eV was estimated. Moreover, continuous nucleation and diffusion-controlled growth have been concluded as the main mechanisms of the crystallization process. Further analysis points at the crucial role of the nucleation rate in the crystallization kinetics of β-Si3N4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.P. Baldus, M. Jansen, O. Wagner: New materials in the system Si–(N,C)–B and their characterization. Key Eng. Mater. 89–91 75 (1994)

    Google Scholar 

  2. R. Riedel, A. Kienzle, W. Dressler, L. Ruwisch, J. Bill, F. Aldinger: A silicoboron carbonitride ceramic stable to 2000 °C. Nature 382 796 (1996)

    Article  CAS  Google Scholar 

  3. G. Thorne, F. Aldinger: Precursor-Derived Ceramics edited by J. Bill, F. Wakai, and F. Aldingers (Wiley-VCH, Weinheim, Germany 1999) 237

    Google Scholar 

  4. N.V. Ravi Kumar, S. Prinz, Y. Cai, A. Zimmerrmann, F. Aldinger, F. Berger, K. Müller: Crystallization and creep behavior of Si–B–C–N ceramics. Acta Mater. 53 4567 (2005)

    Article  Google Scholar 

  5. J. Bill, F. Aldinger: Precursor-derived covalent ceramics. Adv. Mater. 7 775 (1995)

    Article  CAS  Google Scholar 

  6. A. Jalowiecki, J. Bill, F. Aldinger: Interface characterization of nanosized B-doped Si3N4/SiC ceramics. Composites Part A 27 717 (1996)

    Article  Google Scholar 

  7. Y. Cai, A. Zimmermann, S. Prinz, A. Zern, F. Phillipp, F. Aldinger: Nucleation phenomena of nano-crystallites in as-pyrolyzed Si–B–C–N ceramics. Scr. Mater. 45 1301 (2001)

    Article  CAS  Google Scholar 

  8. N. Janakiraman, M. Weinmann, J. Schuhmacher, K. Müller, J. Bill, F. Aldinger: Thermal stability, phase evolution, and crystallization in Si–B–C–N ceramics derived from a polyborosilazane precursor. J. Am. Ceram. Soc. 85 1807 (2002)

    Article  CAS  Google Scholar 

  9. A. Zern, J. Mayer, N. Janakiraman, M. Weinmann, J. Bill, M. Rühle: Quantitative EFTEM study of precursor-derived Si–B–C–N ceramics. J. Eur. Ceram. Soc. 22 1621 (2002)

    Article  CAS  Google Scholar 

  10. M.A. Schiavon, G.D. Soraru, I.V.P. Yoshida: Poly(borosilazanes) as precursors of Si–B–C–N glasses: Synthesis and high temperature properties. J. Non-Cryst. Solids 348 156 (2004)

    Article  CAS  Google Scholar 

  11. S. Bernard, M. Weinmann, P. Gerstel, P. Miele, F. Aldinger: Boron-modified polysilazane as a novel single-source precursor for SiBCN ceramic fibers: Synthesis, melt spinning, curing and ceramic conversion. J. Mater. Chem. 15 289 (2005)

    Article  CAS  Google Scholar 

  12. N. Janakiraman, A. Zern, M. Weinmann, F. Aldinger, P. Singh: Phase evolution and crystallization in Si–B–C–N ceramics derived from a polyborosilazane precursor: Microstructural characterization. J. Eur. Ceram. Soc. 25 509 (2005)

    Article  CAS  Google Scholar 

  13. H.J. Seifert, J. Peng, J. Golczewski, F. Aldinger: Phase equilibria of precursor-derived Si–(B–)C–N ceramics. Appl. Organomet. Chem. 15 794 (2001)

    Article  CAS  Google Scholar 

  14. J.A. Golczewski, F. Aldinger: Phase separation in Si–(B)–C–N polymer-derived ceramics. Int. J. Mater. Res. 97 114 (2006)

    CAS  Google Scholar 

  15. A. Müller, P. Gerstel, M. Weinmann, J. Bill, F. Aldinger: Correlation of boron content and high temperature stability in Si–B–C–N ceramics. J. Eur. Ceram. Soc. 20 2655 (2000)

    Article  Google Scholar 

  16. A. Müller, P. Gerstel, M. Weinmann, J. Bill, F. Aldinger: Correlation of boron content and high temperature stability in Si–B–C–N ceramics II. J. Eur. Ceram. Soc. 21 2171 (2001)

    Article  Google Scholar 

  17. A.H. Tavakoli, P. Gerstel, J.A. Golczewski, J. Bill: Effect of boron on the crystallization of amorphous Si–(B–)C–N polymer-derived ceramics. J. Non-Cryst. Solids 355 2381 (2009)

    Article  CAS  Google Scholar 

  18. H. Schmidt: Si–(B–)C–N ceramics derived from preceramic polymers: Stability and nano-composite formation. Soft Mater. 2–4 143 (2006)

    Google Scholar 

  19. A.H. Tavakoli, P. Gerstel, J.A. Golczewski, J. Bill: Quantitative x-ray diffraction analysis and modeling of the crystallization process in amorphous Si–B–C–N polymer-derived ceramics. J. Am. Ceram. Soc. 93 1470 (2010) (DOI: 10.1111/j.1551-2916.2009.03591.x)

    CAS  Google Scholar 

  20. J.A. Golczewski, F. Aldinder: Thermodynamic modeling of amorphous Si–C–N ceramics derived from polymer precursors. J. Non-Cryst. Solids 347 204 (2004)

    Article  CAS  Google Scholar 

  21. J.A. Golczewski: Thermodynamic analysis of structural transformation induced by annealing of amorphous Si–C–N ceramics derived from polymer precursors. Int. J. Mater. Res. 97 729 (2006)

    CAS  Google Scholar 

  22. J.A. Golczewski: Thermodynamic analysis of isothermal crystallization of amorphous Si–C–N ceramics derived from polymer precursors. J. Ceram. Soc. Jpn. 114 950 (2006)

    Article  CAS  Google Scholar 

  23. M. Peuckert, T. Vaahs, M. Brück: Ceramics from organometallic polymers. Adv. Mater. 2 398 (1990)

    Article  CAS  Google Scholar 

  24. P. Scherrer: Estimation of the size and structure of colloidal particles by Rontgen rays, Göttinger. Nachr. Math. Phys. 2 98 (1918)

    Google Scholar 

  25. M. Avrami: Kinetics of phase change. I: General theory. J. Chem. Phys. 7 1103 (1939)

    Article  CAS  Google Scholar 

  26. M. Avrami: Kinetics of phase change. II: Transformation–time relations for random distribution of nuclei. J. Chem. Phys. 8 212 (1940)

    Article  CAS  Google Scholar 

  27. M. Avrami: Kinetics of phase change. III: Granulation, phase change and microstructure. J. Chem. Phys. 9 177 (1941)

    Article  CAS  Google Scholar 

  28. W.A. Johnson, R.F. Mehl: Reaction kinetics in processes of nucleation and growth. Trans. AIME 135 416 (1939)

    Google Scholar 

  29. A.N. Kolmogorov: On statistical theory of metal crystallization. Izv. Akad. Nauk SSSR Ser. Mat. 3 355 (1937)

    Google Scholar 

  30. J.W. Christian: The Theory of Transformations in Metals and Alloys 3rd ed (Pergamon, Oxford, UK 2002) 546

    Google Scholar 

  31. M.E. Fine: Introduction to Phase Transformations in Condensed Systems (Macmillan, New York 1964) 12

    Google Scholar 

  32. D.A. Porter, K.E. Easterling: Phase Transformations in Metals and Alloys 2nd ed (Chapman and Hall, London, UK 1992) 188 191, 266

    Book  Google Scholar 

  33. A.T.W. Kempen, F. Sommer, E.J. Mittemeijer: Determination and interpretation of isothermal and non-isothermal transformation kinetics; The effective activation energies in terms of nucleation and growth. J. Mater. Sci. 37 1321 (2002)

    Article  CAS  Google Scholar 

  34. H. Schmidt, G. Borchardt, S. Weber, S. Scherrer, H. Baurmann, A. Müller, J. Bill: Self-diffusion studies of 15N in amorphous Si3BC4.3N2 ceramics with ion implantation and secondary ion mass spectrometry. J. Appl. Phys. 88 1827 (2000)

    Article  CAS  Google Scholar 

  35. H. Schmidt, G. Borchardt, H. Baurmann, S. Weber, S. Scherrer, A. Müller, J. Bill: Tracer self-diffusion studies in amorphous Si–(B)–C–N ceramics using ion implantation and SIMS. Def. Diff. Forum 194–199 941 (2001)

    Article  Google Scholar 

  36. H. Schmidt: Fundamentals of self-diffusion in amorphous Si–(B)–C–N. Diff. Fundamentals 2 59.1 (2005)

  37. H. Schmidt, G. Borchardt, O. Kaïtasov, B. Lesage: Atomic diffusion of boron and other constituents in amorphous Si–B–C–N. J. Non-Cryst. Solids 353 4801 (2007)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir H. Tavakoli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tavakoli, A.H., Gerstel, P., Golczewski, J.A. et al. Crystallization kinetics of Si3N4 in Si−B−C−N polymer-derived ceramics. Journal of Materials Research 25, 2150–2158 (2010). https://doi.org/10.1557/jmr.2010.0282

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2010.0282

Navigation