Skip to main content
Log in

Investigation of thermally activated deformation in amorphous PMMA and Zr-Cu-Al bulk metallic glasses with broadband nanoindentation creep

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The development of nanoindentation test systems with high data collection speeds has made possible a novel type of indentation creep test: broadband nanoindentation creep (BNC). Using the high density of data points generated and analysis techniques that can model the instantaneous projected indent area at all times during a constant-load indentation experiment, BNC can reveal materials properties across a range of strain rates spanning up to five decades (10−4–10 s−1). BNC experiments aimed at measuring activation parameters for plasticity were conducted on three systems: two Zr-based bulk metallic glasses and poly-(methyl methacrylate) (PMMA). The results give insight into the operation of the deformation mechanisms present in the test materials, including the dependence of the deformation rate on the hydrostatic component of the stress for PMMA and the form of the activation energy function for the metallic glasses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.R. VanLandingham: Review of instrumented indentation. J. Res. Nat. Inst. Stand. Technol. 108, 249 (2003).

    Article  Google Scholar 

  2. D. Newey, M.A. Wilkins, and H.M. Pollock: An ultra-low-load penetration hardness tester. J. Phys. E: Sci. Instrurn. 15, 119 (1982).

    Article  CAS  Google Scholar 

  3. J.B. Pethica, R. Hutchings, and W.C. Oliver: Hardness measurement at penetration depths as small as 20 nm. Philos. Mag. A 48, 593 (1983).

    Article  CAS  Google Scholar 

  4. S.-P. Hannula, D. Stone, and C.-Y. Li: Determination of time-dependent plastic properties by indentation load relaxation techniques, in Electronic Packaging Materials Science, edited by E.A. Giess, K-N. Tu, and D.R. Uhlmann (Mater. Res. Soc. Symp. Proc. 40, Pittsburgh, PA, 1985), pp. 217–224.

    Google Scholar 

  5. P.M. Sargent and M.F. Ashby: Indentation creep. Mater. Sci. Technol. 8, 594 (1992).

    Article  CAS  Google Scholar 

  6. W.B. Li and R. Warren: A model for nanoindentation creep. Acta Metall. Mater. 41, 3065 (1993).

    Article  CAS  Google Scholar 

  7. A.F. Bower, N.A. Fleck, A. Needleman, and N. Ogbonna: Indentation of a power law creeping solid. Proc. R. Soc. London, Ser. A 441, 97 (1993).

    Article  Google Scholar 

  8. D.S. Stone and K.B. Yoder: Division of the hardness of molybdenum into rate-dependent and rate-independent parts. J. Mater. Res. 9, 2524 (1994).

    Article  CAS  Google Scholar 

  9. S. Yang, Y-W. Zhang, and K. Zeng: Analysis of nanoindentation creep for polymeric materials. J. Appl. Phys. 95, 3655 (2003).

    Article  CAS  Google Scholar 

  10. A.C. Fischer-Cripps: A simple phenomenological approach to nanoindentation creep. Mater. Sci. Eng., A 385, 74 (2004).

    Article  CAS  Google Scholar 

  11. D.L. Goldsby, A. Rar, G.M. Pharr, and T.E. Tullis: Nanoindentation creep of quartz, with implications for rate- and state-variable friction laws relevant to earthquake mechanics. J. Mater. Res. 19, 357 (2004).

    Article  CAS  Google Scholar 

  12. M.F. Ashby and H.J. Frost: The kinetics of plastic deformation above 0°K, in Constitutive Equations in Plasticity, edited by A.S. Argon (MIT Press, Cambridge, MA, 1975), p. 119.

    Google Scholar 

  13. P. Haasen: Physical Metallurgy, 3rd ed., translated by Janet Mordike (Cambridge University Press, Cambridge, UK, 1996), pp. 289–292.

    Book  Google Scholar 

  14. W.L. Johnson and K. Samwer: A universal criterion for plastic yielding of metallic glasses with a T/Tg2/3 temperature dependence. Phys. Rev. Lett. 95, 195501 (2005).

    Article  CAS  Google Scholar 

  15. G.M. Swallowe and S.F. Lee: A study of the mechanical properties of PMMA and PS at strain rates of 10−4 to 103 over the temperature range 293–363 K. J. Phys. IV 110, 33 (2003).

    CAS  Google Scholar 

  16. J.W. Christian: The Theory of Transformations in Metals and Alloys, 2nd ed. (Pergamon Press, Oxford, UK, 1975), p. 81.

    Google Scholar 

  17. F. Spaepen: Defects in amorphous metals, in Les Houches Lectures XXXV: Physics of Defects, R. Balian (North Holland Press, Amsterdam, 1981), p. 133.

    Google Scholar 

  18. C.A. Schuh, T.C. Hufnagel, and U. Ramamurty: Mechanical behavior of amorphous alloys. Acta Mater. 55, 4067 (2007).

    Article  CAS  Google Scholar 

  19. A.S. Argon: Plastic deformation in metallic glasses. Acta Metall. 27, 47 (1979).

    Article  CAS  Google Scholar 

  20. M.L. Falk and J.S. Langer: Dynamics of viscoplastic deformation in amorphous solids. Phys. Rev. E 57, 7192 (1998).

    Article  CAS  Google Scholar 

  21. J.D. Eshelby: The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. London, Ser. A 241, 376 (1957).

    Article  Google Scholar 

  22. B.E. Read: Dynamic mechanical and creep studies of PMMA in the α- and β-relaxation regions. Physical ageing effects and non-linear behaviour, in Lecture Notes in Physics, Vol. 277: Molecular Dynamics and Relaxation Phenomena in Glasses, edited by T. Dorfmüller and G. Williams (Springer-Verlag, Berlin, 1987), p. 61.

    Chapter  Google Scholar 

  23. J. Richeton, S. Ahzi, K.S. Vecchio, F.C. Jiang, and R.R. Adharapurapu: Influence of temperature and strain rate on the mechanical behavior of three amorphous polymers: Characterization and modeling of the compressive yield stress. Int. J. Solids Struct. 43, 2318 (2006).

    Article  CAS  Google Scholar 

  24. J.J. Gilman: Flow via dislocations in ideal glass. J. Appl. Phys. 44. 675 (1973).

    Article  CAS  Google Scholar 

  25. J.D. Eshelby: The continuum theory of lattice defects. Solid State Phys. 3, 79 (1956).

    Article  CAS  Google Scholar 

  26. A.A. Elmustafa, S. Kose, and D.S. Stone: The strain-rate sensitivity of the hardness in indentation creep. J. Mater. Res. 22, 926 (2007).

    Article  CAS  Google Scholar 

  27. D.S. Stone and A.A. Elmustafa: Analysis of indentation creep, in Fundamentals of Nanoindentation and Nanotribology IV, edited by E. Le Bourhis, D.J. Morris, M.L. Oyen, R. Schwaiger, and T. Staedler (Mater. Res. Soc. Symp. Proc. 1049, Warrendale, PA, 2008), pp. 163, 1049-AA10–02.

    Google Scholar 

  28. H. Cao, D. Ma, K-C. Hsieh, L. Ding, W.G. Stratton, P.M. Voyles, Y. Pan, M. Cai, J.T. Dickinson, and Y.A. Chang: Computational thermodynamics to identify Zr-Ti-Ni-Cu-Al alloys with high glass-forming ability. Acta Mater. 54, 2975 (2006).

    Article  CAS  Google Scholar 

  29. J. Hwang and P.M. Voyles: unpublished.

  30. J.E. Jakes, C.R. Frihart, J.F. Beecher, R.J. Moon, and D.S. Stone: Experimental method to account for structural compliance in nanoindentation measurements. J. Mater. Res. 23, 1113 (2008).

    Article  CAS  Google Scholar 

  31. A.H.W. Ngan and B. Tang: Viscoelastic effects during unloading in depth-sensing indentation. J. Mater. Res. 17, 2604 (2002).

    Article  CAS  Google Scholar 

  32. D. Jang and M. Atzmon: Grain-size dependence of plastic deformation in nanocrystalline Fe. J. Appl. Phys. 93, 9282 (2003).

    Article  CAS  Google Scholar 

  33. F. Wang, P. Huang, and K.W. Xu: Time dependent plasticity at real nanoscale deformation. Appl. Phys. Lett. 90, 161921 (2007).

    Article  CAS  Google Scholar 

  34. M.F. Doerner and W.D. Nix: A method for interpreting the data from depth-sensing indentation instruments. J. Mater. Res. 1, 601 (1986).

    Article  Google Scholar 

  35. A.A. Elmustafa and D.S. Stone: Nanoindentation and the indentation size effect: Kinetics of deformation and strain gradient plasticity. J. Mech. Phys. Solids 51, 357 (2003).

    Article  CAS  Google Scholar 

  36. C.A. Schuh and T.G. Nieh: A nanoindentation study of serrated flow in bulk metallic glasses. Acta Mater. 51, 87 (2003).

    Article  CAS  Google Scholar 

  37. W.H. Li, T.H. Zhang, D.M. Xing, B.C. Wei, Y.R. Wang, and Y.D. Dong: Instrumented indentation study of plastic deformation in bulk metallic glasses. J. Mater. Res. 21, 75 (2006).

    Article  CAS  Google Scholar 

  38. B. Yang and T.G. Nieh: Effect of the nanoindentation rate on the shear band formation in an Au-based bulk metallic glass. Acta Mater. 55, 295 (2007).

    Article  CAS  Google Scholar 

  39. C.A. Schuh, A.C. Lund, and T.G. Nieh: New regime of homogeneous flow in the deformation map of metallic glasses: Elevated temperature nanoindentation experiments and mechanistic modeling. Acta Mater. 52, 5879 (2004).

    Article  CAS  Google Scholar 

  40. K.L. Johnson: Contact Mechanics (Cambridge University Press, Cambridge, UK, 1987), pp. 153–241.

    Google Scholar 

  41. A.A. Elmustafa and D.S. Stone: Strain rate sensitivity in the nanoindentation creep of hard materials. J. Mater. Res. 22, 2912 (2007).

    Article  CAS  Google Scholar 

  42. L.A. Davis and C.A. Pampillo: Deformation of polyethylene at high pressure. J. Appl. Phys. 42, 4659 (1971).

    Article  CAS  Google Scholar 

  43. L.A. Davis and C.A. Pampillo: Kinetics of deformation of PTFE at high pressure. J. Appl. Phys. 43, 4285 (1972).

    Article  CAS  Google Scholar 

  44. C.A. Schuh and T.G. Nieh: A survey of instrumented indentation studies on metallic glasses. J. Mater. Res. 19, 46 (2004).

    Article  CAS  Google Scholar 

  45. K.E. Prasad, R. Raghavan, and U. Ramamurty: Temperature dependence of pressure sensitivity in a metallic glass. Scr. Mater. 57, 121 (2007).

    Article  CAS  Google Scholar 

  46. M. Heggen, F. Spaepen, and M. Feuerbacher: Creation and annihilation of free volume during homogeneous flow of a metallic glass. Mater. Sci. Eng., A 1186375–377, (2004).

    Google Scholar 

  47. B. Yang, J. Wadsworth, and T.G. Nieh: Thermal activation in Au-based bulk metallic glass characterized by high-temperature nanoindentation. Appl. Phys. Lett. 90, 061911 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Stone.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Puthoff, J.B., Jakes, J.E., Cao, H. et al. Investigation of thermally activated deformation in amorphous PMMA and Zr-Cu-Al bulk metallic glasses with broadband nanoindentation creep. Journal of Materials Research 24, 1279–1290 (2009). https://doi.org/10.1557/jmr.2009.0145

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2009.0145

Navigation