Skip to main content
Log in

Numerical analysis of plastic deformation evolution into metallic materials during spherical indentation process

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The present paper deals with the plastic deformation process into metallic materials occurring in the subindenter region during the loading cycle of spherical indentation test. Load–indentation-depth curve and plastic strains field evolution in the region beneath the indenter are examined using finite element analysis (FEA). The FE model was set up and validated by comparison with experimental spherical indentations carried out on two different materials (Al6082-T6, AISI H13) under four different friction conditions, corresponding to friction coefficients equal to 0.0, 0.1, 0.3, and 0.5. It is confirmed that friction effects on load–indentation-depth curves are negligible for the investigated penetration depths, whereas the plastic deformation process is affected by the contact conditions. The investigation shows that, although the Lh curve is not affected by the contact conditions up to medium values of the penetration depth, remarkable effects are produced in the overall plastic core under the indenter. A strong correlation between plastic strains field and friction coefficient is especially observed at low values of this parameter, whereas a saturation of the phenomena is found for medium-high values of the friction coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y.T. Cheng and C.M. Cheng: Relationship between hardness, elastic modulus and the work of indentation. Appl. Phys. Lett. 73, 614 (1998).

    Article  CAS  Google Scholar 

  2. A.E. Giannakopoulos and S. Suresh: Determination of elastoplas-tic properties by instrumented sharp indentation. Scr. Mater. 40, 1191 (1999).

    Article  CAS  Google Scholar 

  3. M. Dao, N. Chollacoop, K.J. Van Vliet, T.A. Venkatesh, and S. Suresh: Computational modelling of the forward and reverse problems in instrumented sharp indentation. Acta Mater. 49, 3899 (2001).

    Article  CAS  Google Scholar 

  4. M. Mata and J. Alcalá: The role of friction on sharp indentation. J. Mech. Phys. Solids 52, 145 (2004).

    Article  Google Scholar 

  5. W.C. Oliver and G.M. Pharr: Measurement of hardness and elastic modulus by instrumented indentation. Advances in understanding and refinements to methodology. J. Mater. Res. 19, 3 (2004).

    Article  CAS  Google Scholar 

  6. B. Taljat, T. Zacharia, and F. Kosel: New analytical procedure to determine stress-strain curve from spherical indentation data. Int. J. Solids Struct. 33, 4411 (1998).

    Article  Google Scholar 

  7. E.G. Herbert, G.M. Pharr, W.C. Oliver, B.N. Lucas, and J.L. Hay: On the measurement of stress-strain curves by spherical indentation. Thin Solid Films 398–399, 331 (2001).

    Article  Google Scholar 

  8. A. Nayebi, R. El Abdi, O. Bartier, and G. Mauvoisin: New procedure to determine steel mechanical parameters from spherical indentation technique. Mech. Mater. 34, 243 (2002).

    Article  Google Scholar 

  9. Y.P. Cao and J. Lu: A new method to extract the plastic properties of metals materials from an instrumented spherical indentation loading curve. Acta Mater. 52, 4023 (2004).

    Article  CAS  Google Scholar 

  10. H. Lee, J.H. Lee, and G.M. Pharr: A numerical approach to spherical techniques for material property evaluation. J. Mech. Phys. Solids 53, 2037 (2005).

    Article  CAS  Google Scholar 

  11. M. Zhao, N. Ogasawara, N. Chiba, and X. Chen: A new approach to measure the elastic-plastic properties of bulk materials using spherical indentation. Acta Mater. 54, 23 (2006).

    Article  CAS  Google Scholar 

  12. M. Beghini, L. Bertini, and V. Fontanari: Evaluation of the stress-strain curve of metallic materials by spherical indentation. Int. J. Solids Struct. 43, 2441 (2006).

    Article  CAS  Google Scholar 

  13. Y.P. Cao, X. Qian, and N. Huber: Spherical indentation into elastoplastic materials. Indentation-response based definitions of the representative strain. Mater. Sci. Eng. A 454–455, 1 (2007).

    Article  Google Scholar 

  14. Y.T. Cheng and C.M. Cheng: Scaling approach to conical indentation in elastic-plastic solids with work hardening. J. Appl. Phys. 84, 1284 (1998).

    Article  CAS  Google Scholar 

  15. Y.T. Cheng and C.M. Cheng: Scaling, dimensional analysis and indentation measurements. Mater. Sci. Eng. R 44, 91 (2004).

    Article  Google Scholar 

  16. S.D. Mesarovic and N.A. Fleck: Spherical indentation of elastic-plastic solids. Proc. R. Soc. London, Ser. A 455, 2707 (1999).

    Article  Google Scholar 

  17. H. Hertz: Miscellaneous Papers by H. Hertz, edited by D.E. Jones and J.A. Schott (Macmillan, London, 1896).

  18. D. Tabor: The Hardness of Metals (Clarendon Press, Oxford, UK, 1951).

    Google Scholar 

  19. K.L. Johnson: The correlation of indentation experiments. J. Mech. Phys. Solids 18, 115 (1970).

    Article  Google Scholar 

  20. K.L. Johnson: Contact Mechanics (Cambridge University Press, Cambridge, UK, 1985).

    Book  Google Scholar 

  21. R. Hill, B. Storakes, and A.B. Zdunek: A theoretical study of the Brinnel hardness test. Proc. R. Soc. London Ser. A 436, 301 (1989).

    Google Scholar 

  22. B. Taljat and G.M. Pharr: Development of pile-up during spherical indentation of elastic-plastic solids. Int. J. Solids Struct. 41, 3891 (2004).

    Article  Google Scholar 

  23. H. Habbad, B.G. Mellor, and S. Syngellakis: Post-yield characterization of metals with significant pile-up through spherical indentation. Acta Mater. 54, 1965 (2006).

    Article  Google Scholar 

  24. M. Beghini, L. Bertini, L. Bosio, V. Fontanari, and R. Valleggi: Design of the “Diaptometro”, testing machine for the mechanical characterization of metallic materials by instrumented spherical indentation. Proceedings AIAS 2006, Ancona, Italy, 13–16 September 2006, on-line at (www.aiasonline.org).

    Google Scholar 

  25. K.J. Bathe: Finite Element Procedure (Prentice Hall, Upper Saddle River, NJ, 1996).

    Google Scholar 

  26. A. Nayebi, O. Bartier, G. Mauvoisin, and R. El Abdi: New method to determine the mechanical properties of heat treated steels. Int. J. Mech. Sci. 43, 2679 (2001).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. D. Monelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beghini, M., Bertini, L., Fontanari, V. et al. Numerical analysis of plastic deformation evolution into metallic materials during spherical indentation process. Journal of Materials Research 24, 1270–1278 (2009). https://doi.org/10.1557/jmr.2009.0142

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2009.0142

Navigation