Skip to main content
Log in

Solvothermal synthesis of zirconia and yttria-stabilized zirconia nanocrystalline particles

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A solvothermal method was used to prepare zirconia and yttria-stabilized zirconia (YSZ) particles using zirconium hydroxide and yttrium hydroxide particles as precursors and ethanol or isopropanol as reaction media. The particle properties were characterized with x-ray diffractometry, scanning electron microscopy, transmission electron microscopy, thermal analysis, laser particle-size analysis, nitrogen adsorption (Brunauer–Emmett–Teller method) and Zeta potential analysis. Cubic/tetragonal ZrO2 and YSZ nanocrystals with crystallite size around 5 nm were obtained. The effect of different hydroxide precursors, attrition milling of hydroxide precursors, solvothermal processing conditions, and mineralizer was investigated and discussed by referring to the crystallization process of zirconium hydroxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F.F. Lange: Powder processing science and technology for increased reliability. J. Am. Ceram. Soc. 72, 3 (1989).

    Article  CAS  Google Scholar 

  2. J.S. Reed: Principles of Ceramic Processing, 2nd ed. (John Wiley & Sons, 1995).

    Google Scholar 

  3. Science and Technology of Zirconia III edited by S. Somiya, N. Yamamoto, and N.Y. Yanagida (American Ceramic Society, Columbus, OH, 1988).

    Google Scholar 

  4. J.R. Groza: Nanosintering. Nanostruct. Mater. 12, 987 (1999).

    Article  Google Scholar 

  5. M.J. Mayo: Processing of nanocrystalline ceramics from ultrafine particles. Int. Mater. Rev. 41, 85 (1996).

    Article  CAS  Google Scholar 

  6. M.J. Mayo, A. Suresh, and W.D. Porter: Thermodynamics for nanosystems: Grain and particle-size dependent phase diagrams. Rev. Adv. Mater. Sci. 5, 100 (2003).

    CAS  Google Scholar 

  7. J.A. Lewis: Colloidal processing of ceramics. J. Am. Ceram. Soc. 83, 2341 (2000).

    Article  CAS  Google Scholar 

  8. T. Tsukada, S. Venigalla, A.A. Morrone, and J.H. Adair: Low-temperature hydrothermal synthesis of yttrium-doped zirconia powders. J. Am. Ceram. Soc. 82, 1169 (1999).

    Article  CAS  Google Scholar 

  9. S. Somiya and T. Akiba: Hydrothermal zirconia powders: A bibliography. J. Eur. Ceram. Soc. 9, 81 (1999).

    Article  Google Scholar 

  10. R.R. Piticescu, C. Monty, D. Taloi, A. Motoc, and S. Axinte: Hydrothermal synthesis of zirconia nanomaterials. J. Eur. Ceram. Soc. 21, 2057 (2001).

    Article  CAS  Google Scholar 

  11. E. Tani, M. Yoshimura, and S. Somiya: Formation of ultrafine tetragonal ZrO2 powder under hydrothermal conditions. J. Am. Ceram. Soc. 66, 11 (1983).

    Article  CAS  Google Scholar 

  12. H. Nishizawa, N. Yamasaki, and K. Matsuoka: Crystallization and transformation of zirconia under hydrothermal conditions. J. Am. Ceram. Soc. 65, 343 (1982).

    Article  CAS  Google Scholar 

  13. G. Dell’Agli and G. Mascolo: Hydrothermal synthesis of ZrO2–Y2O3 solid solutions at low temperature. J. Eur. Ceram. Soc. 20, 139 (2000).

    Article  Google Scholar 

  14. X.M. Wang, G. Lorimer, and P. Xiao: Solvothremal synthesis and processing of yttria-stabilized zirconia nanopowder. J. Am. Ceram. Soc. 88, 809 (2005).

    Article  CAS  Google Scholar 

  15. H. Zile, X.M. Wang, P. Xiao, and J. Shi: Solvent effect on microstructure of yttria-stabilized zirconia (YSZ) particles in solvothermal synthesis. J. Eur. Ceram. Soc. 26, 2257 (2006).

    Article  Google Scholar 

  16. Y.B. Khollam, A.S. Deshpande, A.J. Patil, H.S. Potdar, S.B. Deshpande, and S.K. Date: Synthesis of yttria stabilized cubic zirconia (YSZ) powders by microwave-hydrothermal route. Mater. Chem. Phys. 71, 235 (2001).

    Article  CAS  Google Scholar 

  17. G. Dell’Agli, A. Colantuono, and G. Mascolo: The effect of mineralizers on the crystallization of zirconia gel under hydrothermal conditions. Solid State Ionics 123, 87 (1999).

    Article  Google Scholar 

  18. G. Dell’Agli and G. Mascolo: Zirconia-yttria (8 mol%) powder hydrothermally synthesized from different y-based precursors. J. Eur. Ceram. Soc. 24, 915 (2004).

    Article  Google Scholar 

  19. J. Zhao, W. Fan, D. Wu, and Y. Sun: Stable nanocrystalline zirconia sols prepared by a novel method: Alcohol thermal synthesis. J. Mater. Res. 15, 402 (2000).

    Article  CAS  Google Scholar 

  20. M. Inoue, H. Kominami, and T. Inui: Solvothermal synthesis of large surface area zirconia. Res. Chem. Intermed. 24, 571 (1998).

    Article  CAS  Google Scholar 

  21. H.J. Noh, D.S. Seo, H. Kim, and J.K. Lee: Synthesis and crystallization of anisotropic shaped ZrO2 nanocrystalline powders by hydrothermal process. Mater. Lett. 57, 2425 (2003).

    Article  CAS  Google Scholar 

  22. Y.W. Zhang, G. Xu, Z.G. Yan, Y. Yang, C.S. Liao, and C.H. Yan: Nanocrystalline rare earth stabilized zirconia: Solvothermal synthesis via heterogeneous nucleation-growth mechanism, and electrical properties. J. Mater. Chem. 12, 970 (2002).

    Article  CAS  Google Scholar 

  23. G. Dell’Agli and G. Mascolo: Agglomeration of 3 mol% Y-TZP powders synthesized by hydrothermal treatment. J. Eur. Ceram. Soc. 21, 29 (2001).

    Article  Google Scholar 

  24. Y.V. Kolen’ko, V.D. Maximov, A.A. Burukhin, V.A. Muhanov, and B.R. Churagulov: Synthesis of ZrO2 and TiO2 nanocrystalline powders by hydrothermal process. Mater. Sci. Eng., C 23, 1033 (2003).

    Article  Google Scholar 

  25. C.D. Sagel-Ransijn, A.J.A Winubst, A.J. Burggraaf, and H. Verweij: The influence of crystallization and washing medium on the characteristics of nanocrystalline Y-TZP. J. Eur. Ceram. Soc. 16, 159 (1996).

    Article  Google Scholar 

  26. D.L. Norton: Theory of hydrothermal systems. Ann. Rev. Earth Planet. Sci. 12, 155 (1984).

    Article  Google Scholar 

  27. C. Huang, Z. Tang, and Z. Zhang: Differences between zirconium hydroxide [Zr(OH)4· n H2O] and hydrous zirconia (ZrO2·n H2O). J. Am. Ceram. Soc. 84, 1637 (2001).

    Article  CAS  Google Scholar 

  28. K. Matsui and M. Ohgai: Formation mechanism of hydrous zirconia particles produced by hydrolysis of ZrOCl2 solutions: IV. Effects of ZrOCl2 concentration and reaction temperature. J. Am. Ceram. Soc. 85, 545 (2002).

    Article  CAS  Google Scholar 

  29. G.M. Muha and P.A. Vaughan: Structure of the complex ion in aqueous solutions of zirconyl and hafnyl oxyhalides. J. Chem. Phys. 33, 194 (1960).

    Article  CAS  Google Scholar 

  30. A. Clearfield: Structural aspects of zirconium chemistry. Rev. Pure Appl. Chem. 14, 91 (1964).

    CAS  Google Scholar 

  31. C. Kaya, J.Y. He, X. Gu, and E.G. Butler: Nanostructured ceramic powders by hydrothermal synthesis and their application. Microporous Mesoporous Mater. 54, 37 (2002).

    Article  CAS  Google Scholar 

  32. Lange’s Handbook of Chemistry, 15th ed., edited by J.A. Dean (McGraw-Hill, Columbus, OH, 1999).

    Google Scholar 

  33. S. Komarneni, R. Roy, and Q.H. Li: Microwave-hydrothermal synthesis of ceramic powders. Mater. Res. Bull. 27, 1393 (1992).

    Article  CAS  Google Scholar 

  34. Y. Zhang, G. Xu, Z. Yan, Y. Yang, C. Liao, and C. Yan: Nanocrystalline rare earth stabilized zirconia: Solvothermal synthesis via heterogeneous nucleation-growth mechanism, and electrical properties. J. Mater. Chem. 12, 970 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Xiao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X.M., Xiao, P. Solvothermal synthesis of zirconia and yttria-stabilized zirconia nanocrystalline particles. Journal of Materials Research 22, 46–55 (2007). https://doi.org/10.1557/jmr.2007.0012

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2007.0012

Navigation