Skip to main content
Log in

Bulk nanocrystalline stainless steel fabricated by equal channel angular pressing

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Bulk fully nanocrystalline grain structures were successfully obtained in ultralow carbon stainless steel by means of equal channel angular pressing at room temperature. Transmission electron microscopy (TEM) and high-resolution TEM investigations indicated that two types of nanostructures were formed: nanocrystalline strain-induced martensite (body-centered cubic structure) with a mean grain size of 74 nm and nanocrystalline austenite (face-centered cubic structure) with a size of 31 nm characterized by dense deformation twins. The results about the formation of fully nanocrystalline grain structures in stainless steel suggested that a low stacking fault energy is exceptionally profitable for producing nanocrystalline materials by equal channel angular pressing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.H. McFadden, R.S. Mishra, R.Z. Valiev, A.P. Zhilyaev, A.K. Mukherjee: Low-temperature superplasticity in nanostructured nickel and metal alloys. Nature 398, 684 (1999).

    Article  CAS  Google Scholar 

  2. F. Ebrahimi, Z. Ahmed, H. Li: Effect of stacking fault energy on plastic deformation of nanocrystalline face-centered cubic metals. Appl. Phys. Lett. 85, 3749 (2004).

    Article  CAS  Google Scholar 

  3. X.H. Chen, J. Lu, L. Lu, K. Lu: Tensile properties of a nanocrystalline 316L austenitic stainless steel. Scripta Mater. 52, 1039 (2005).

    Article  CAS  Google Scholar 

  4. R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov: Bulk nanostructured materials from severe plastic deformation. Prog. Mater. Sci. 45, 103 (2000).

    Article  CAS  Google Scholar 

  5. K. Lu, J. Lu: Nanotructured surface layer on metallic materials induced by surface mechanical attrition treatment. Mater. Sci. Eng. A 375, 38 (2004).

    Article  Google Scholar 

  6. S. Komura, Z. Horita, M. Nemoto, T.G. Langdon: Influence of stacking fault energy on microstructural development in equal-channel angular pressing. J. Mater. Res. 14, 4044 (1999).

    Article  CAS  Google Scholar 

  7. Y. Iwahashi, Z. Horita, M. Nemoto, T.G. Langdon: Factors influencing the equilibrium grain size in equal-channel angular pressing: Role of Mg additions to aluminum. Metall. Mater. Trans. 29A, 2503 (1998).

    Article  CAS  Google Scholar 

  8. B.Q. Han, E.J. Lavernia, F.A. Mohamed: Mechanical properties of iron processed by severe plastic deformation. Metall. Mater. Trans. A 34, 71 (2003).

    Article  Google Scholar 

  9. Y. Fukuda, K. Oh-ishi, Z. Horita, T.G. Langdon: Processing of a low-carbon steel by equal-channel angular pressing. Acta Mater. 50, 1359 (2002).

    Article  CAS  Google Scholar 

  10. V.V. Stolyarov, Y.T. Zhu, T.V. Alexandrov, T.C. Lowe, R.Z. Valiev: Influence of ECAP routes on the microstructure and properties of pure Ti. Mater. Sci. Eng. A 299, 59 (2001).

    Article  Google Scholar 

  11. T. Liu, W. Zhang, S.D. Wu, C.B. Jiang, S.X. Li, Y.B. Xu: Mechanical properties of a two-phase alloy Mg–8%Li–1%Al processed by equal channel angular pressing. Mater. Sci. Eng. A 360, 345 (2003).

    Article  Google Scholar 

  12. I.P. Semenova, G.I. Raab, L.R. Saitova, R.Z. Valiev: The effect of equal-channel angular pressing on the structure and mechanical behavior of Ti-6Al-4V alloy. Mater. Sci. Eng. A 387, 805 (2004).

    Article  Google Scholar 

  13. Q. Wei, K.T. Ramesh, E. Ma, L.J. Kesckes, R.J. Dowding, V.U. Kazykhanov, R.Z. Valiev: Plastic flow localization in bulk tungsten with ultrafine microstructure. Appl. Phys. Lett. 86, 101907 (2005).

    Article  Google Scholar 

  14. H.W. Zhang, Z.K. Hei, G. Liu, J. Lu, K. Lu: Formation of nanostructured surface layer on AISI 304 stainless steel by means of surface mechanical attrition treatment. Acta Mater. 51, 1871 (2003).

    Article  CAS  Google Scholar 

  15. G.G. Yapici, I. Karaman, Z.P. Luo, H.J. Maier, Y.I. Chumlyakov: Microstructural refinement and deformation twinning during severe plastic deformation of 316L stainless steel at high temperatures. J. Mater. Res. 19, 2268 (2004).

    Article  CAS  Google Scholar 

  16. L.E. Murr: Interfacial Phenomena in Metals and Alloys (Techbooks, Herndan, VA, 1975), p. 145.

    Google Scholar 

  17. H.C. Shin, T.K. Ha, W.J. Park, Y.W. Chang: Deformation-induced martensite transformation under various deformation modes. Key Eng. Mater. 233, 667 (2003).

    Article  Google Scholar 

  18. N.R. Tao, X.L. Wu, M.L. Sui, J. Lu, K. Lu: Grain refinement at the nanoscale via mechanical twinning and dislocation interaction in a nickel-based alloy. J. Mater. Res. 19, 1623 (2004).

    Article  CAS  Google Scholar 

  19. V. Yamakov, D. Wolf, S.R. Phillpot, A.K. Mukherjee, H. Gleiter: Dislocation processes in the deformation of nanocrystalline aluminium by molecular-dynamics simulation. Nat. Mater. 1, 1 (2002).

    Article  Google Scholar 

  20. M.W. Chen, E. Ma, K.J. Hemker, Y.M. Wang, X. Cheng: Deformation twinning in nanocryatalline aluminum. Science 300, 1275 (2003).

    Article  CAS  Google Scholar 

  21. X.Z. Liao, Y.H. Zhao, S.G. Srinivasan, Y.T. Zhu, R.Z. Valiev, D.V. Gunderov: Deformation twinning in nanocrystalline copper at room temperature and low strain rate. Appl. Phys. Lett. 84, 592 (2004).

    Article  CAS  Google Scholar 

  22. C.X. Huang, S.D. Wu, Z.F. Zhang, G.Y. Li, S.X. Li: Deformation twinning in polycrystalline copper at room temperature and low strain rate. Acta Mater. 54, 655 (2006).

    Article  CAS  Google Scholar 

  23. Q. Liu, D.J. Jensen, N. Hansen: Effect of grain orientation on deformation structure in cold-rolled polycrystalline aluminium. Acta Mater. 46, 5819 (1998).

    Article  CAS  Google Scholar 

  24. D.A. Hughens, N. Hansen: High angle boundaries formed by grain subdivision mechanisms. Acta Mater. 45, 3871 (1997).

    Article  Google Scholar 

  25. Y. Iwahashi, Z. Horita, M. Nemoto, T.G. Langdon: An investigation of microstructural evolution during equal-channel angular pressing. Acta Mater. 45, 4733 (1997).

    Article  CAS  Google Scholar 

  26. Y.M. Wang, M.W. Chen, H.W. Sheng, E. Ma: Nanocrystalline grain structures developed in commercial purity Cu by low-temperature cold rolling. J. Mater. Res. 17, 3004 (2002).

    Article  CAS  Google Scholar 

  27. N.R. Tao, Z.B. Wang, W.P. Tong, M.L. Sui, J. Lu, K. Lu: An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment. Acta Mater. 50, 4603 (2002).

    Article  CAS  Google Scholar 

  28. F.J. Humphreys, M. Hatherly: Recrystallization and Related Annealing Phenomena (Pergamon Press, Oxford, UK, 1996), p. 127.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. D. Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, C.X., Gao, Y.L., Yang, G. et al. Bulk nanocrystalline stainless steel fabricated by equal channel angular pressing. Journal of Materials Research 21, 1687–1692 (2006). https://doi.org/10.1557/jmr.2006.0214

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2006.0214

Navigation