Skip to main content
Log in

Mechanical properties of helically perforated thin films

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The mechanical behavior of a helically perforated thin film structure was simulated by finite element analysis. The validity of the results was confirmed by comparison to a nanoindentation measurement performed on a nickel helically perforated thin film sample. It was found that variation of the helical pitch angle from 35° to 70° resulted in a change of 1.5 times in the elastic modulus. Since the fabrication process used to create the actual samples allows for variation of the pitch angle, this result may enable the tailoring of materials for use in micro- and nanoscale devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Sundararajan, B. Bhushan: Development of AFM-based techniques to measure mechanical properties of nanoscale structures. Sens. Actuators A: Phys. 101, 338 (2002).

    Article  CAS  Google Scholar 

  2. W.N. Sharpe Jr., B. Yuan, R.L. Edwards: A new technique for measuring the mechanical properties of thin films. J. Microelectromech. Syst. 6, 193 (1997).

    Article  Google Scholar 

  3. T. Namazu, Y. Isono, T. Tanaka: Evaluation of size effect on mechanical properties of single-crystal silicon by nanoscale bending test using AFM. J. Microelectromech. Syst. 9, 450 (2000).

    Article  Google Scholar 

  4. K. Robbie, M.J. Brett, A. Lakhtakia: Chiral sculptured thin films. Nature 384, 616 (1996).

    Article  CAS  Google Scholar 

  5. K. Robbie and M.J. Brett: U.S. Patent No. 5 866 204 (Feb. 2, 1999).

    Google Scholar 

  6. M.W. Seto, B. Dick, M.J. Brett: Microsprings and microcantilevers: Studies of mechanical response. J. Micromech. Microeng. 11, 582 (2001).

    Article  CAS  Google Scholar 

  7. A.L. Elias, K.D. Harris, M.J. Brett: Fabrication of helically perforated gold, nickel, and polystyrene thin films. J. Microelectromech. Syst. 13, 808 (2004).

    Article  Google Scholar 

  8. W.C. Young: Roark’s Formulas for Stress and Strain, 6th ed. (McGraw-Hill, New York, 1989), p. 386.

    Google Scholar 

  9. ANSYS Inc. http://www.ansys.com. (accessed Sept. 16, 2005).

  10. K. Robbie, J.C. Sit, M.J. Brett: Advanced techniques for glancing angle deposition. J. Vac. Sci. Technol. B 16, 1115 (1998).

    Article  CAS  Google Scholar 

  11. M.O. Jensen, M.J. Brett: Porosity engineering in glancing angle deposition thin films. Appl. Phys. A 80, 763 (2005).

    Article  CAS  Google Scholar 

  12. M. Malac, R.F. Egerton, M.J. Brett, B. Dick: Fabrication of submicrometer regular arrays of pillars and helices. J. Vac. Sci. Technol. B 17, 2671 (1999).

    Article  CAS  Google Scholar 

  13. W.C. Oliver, G.M. Pharr: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Fernando.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernando, S.P., Elias, A.L. & Brett, M.J. Mechanical properties of helically perforated thin films. Journal of Materials Research 21, 1101–1105 (2006). https://doi.org/10.1557/jmr.2006.0160

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2006.0160

Navigation