Skip to main content
Log in

Localized heating and fracture criterion for bulk metallic glasses

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this study, we demonstrated that the failure of bulk metallic glasses (BMGs) results from a sudden temperature rise within a shear band. Using a shear transformation zone model, we successfully calculated the temperature within a shear band and found it consistent with the observation from an in situ infrared thermographic system. The instantaneous temperature within a shear band at fracture agrees remarkably well with the glass transition temperature (Tg providing a new criterion to determine the strength of BMGs from their Tg. This agreement also discloses the fact that catastrophic failure of BMG is caused by the sudden drop in viscosity inside the shear band when the instantaneous temperature within a shear band approaches Tg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. He, S.J. Poon, G.J. Shiflet: Synthesis and properties of metallic glasses that contain aluminum. Science 241, 1640 (1988).

    CAS  Google Scholar 

  2. R.W. Cahn: Materials science: Aluminum-based glassy alloys. Nature 341, 183 (1989).

    Google Scholar 

  3. A.L. Greer: Metallic glasses. Science 267, 1947 (1995).

    CAS  Google Scholar 

  4. C.T. Liu, L. Heatherly, D.S. Easton, C.A. Carmichael, J.H. Schneibel, C.H. Chen, J.L. Wright, M.H. Yoo, J.A. Horton, A. Inoue: Test environments and mechanical properties of Zr-base bulk amorphous alloys. Metall. Mater. Trans. A 29(7), 1811 (1998).

    Google Scholar 

  5. W.L. Johnson: Bulk glass-forming metallic alloys: Science and technology. MRS Bull. 24(10), 42 (1999).

    CAS  Google Scholar 

  6. M.W. Chen, T. Zhang, A. Inoue, A. Sakai, T. Sakurai: Quasicrystals in a partially devitrified Zr65Al7.5Ni10Cu12.5Ag5 bulk metallic glass. Appl. Phys. Lett. 75(12), 1697 (1999).

    CAS  Google Scholar 

  7. J.J. Kim, Y. Choi, S. Suresh, A.S. Argon: Nanocrystallization during nanoindentation of a bulk amorphous metal alloy at room temperature. Science 295, 654 (2002).

    CAS  Google Scholar 

  8. H.J. Leamy, H.S. Chen, T.T. Wang: Plastic-flow and fracture of metallic glass. Metall. Trans. 3(3), 699 (1972).

    CAS  Google Scholar 

  9. F. Spaepen: A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metall. 25, 407 (1976).

    Google Scholar 

  10. A.S. Argon: Plastic deformation in metallic glasses. Acta Metall. 27, 47 (1979).

    CAS  Google Scholar 

  11. E. Pekarskaya, C.P. Kim, W.L. Johnson: In situ transmission electron microscopy studies of shear bands in a bulk metallic glass based composite. J. Mater. Res. 16(9), 2513 (2001).

    CAS  Google Scholar 

  12. P.E. Donovan, W.M. Stobbs: The structure of shear bands in metallic glasses. Acta Metall. 29(8), 1419 (1981).

    CAS  Google Scholar 

  13. T.C. Hufnagel, T. Jiao, Y. Li, L.Q. Xing, K.T. Ramesh: Deformation and failure of Zr57Ti5Cu20Ni8Al10 bulk metallic glass under quasi-static and dynamic compression. J. Mater. Res. 17(6), 1441 (2002).

    CAS  Google Scholar 

  14. W.J. Wright, R.B. Schwarz, W.D. Nix: Localized heating during serrated plastic flow in bulk metallic glasses. Mater. Sci. Eng. A 319–321, 229 (2001).

    Google Scholar 

  15. J.J. Lewandowski, N.A. Stelmashenko, and A.L. Greer: Experimental observations of shear banding in bulk metallic glasses. The 2005 TMS Annual Meeting, San Francisco, CA, February 13–17, 2005.

    Google Scholar 

  16. A.S. Argon, L.T. Shi: Development of visco-plastic deformation in metallic glasses. Acta Metall. 31(4), 499 (1983).

    Google Scholar 

  17. M.L. Falk, J.S. Langer: Dynamics of viscoplastic deformation in amorphous solids. Phys. Rev. E 57(6), 7192 (1998).

    CAS  Google Scholar 

  18. M.L. Falk: Molecular-dynamics study of ductile and brittle fracture in model noncrystalline solids. Phys. Rev. B 60(10), 7062 (1999).

    CAS  Google Scholar 

  19. C.A. Schuh, A.C. Lund, T.G. Nieh: New regime of homogeneous flow in the deformation map of metallic glasses: Elevated temperature nanoindentation experiments and mechanistic modeling. Acta Mater. 52(20), 5879 (2004).

    CAS  Google Scholar 

  20. J. Lu, G. Ravichandran, W.L. Johnson: Deformation behavior of the Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass over a wide range of strain-rates and temperatures. Acta Mater. 51(12), 3429 (2003).

    CAS  Google Scholar 

  21. M.D. Demetriou, W.L. Johnson: Modeling the transient flow of undercooled glass-forming liquids. J. Appl. Phys. 95(5), 2857 (2004).

    CAS  Google Scholar 

  22. K.M. Flores, R.H. Dauskardt: Mean stress effects on flow localization and failure in a bulk metallic glass. Acta Mater. 49, 2527 (2001).

    CAS  Google Scholar 

  23. A.W. Simpson, P.H. Hodkinson: Bubble raft model for an amorphous alloy. Nature 237, 320 (1972).

    CAS  Google Scholar 

  24. A.S. Argon, H.Y. Kuo: Plastic-flow in a disordered bubble raft (an analog of a metallic glass). Mater. Sci. Eng. 39, 101 (1979).

    Google Scholar 

  25. K. Maeda, S. Takeuchi: Simple computer modeling of metallic amorphous structure. J. Phys. F 8(12), L283 (1978).

    CAS  Google Scholar 

  26. A.T. Zehnder, A.J. Rosakis: On the temperature distribution at the vicinity of dynamically propagating cracks in 4340 steel. J. Mech. Phys. Solids 39(3), 382 (1991).

    Google Scholar 

  27. J.A. Kallivayalil, A.T. Zehnder: Measurement of temperature field induced by dynamic crack growth in ß-C titanium. Int. J. Frac. 66, 99 (1994).

    CAS  Google Scholar 

  28. R. Weichert, K. Schonert: Heat generation at the tip of a moving crack. J. Mech. Phys. Solids 26, 151 (1978).

    Google Scholar 

  29. S.C. Glade, R. Busch, D.S. Lee, W.L. Johnson, R.K. Wunderlich, H.J. Fecht: Thermodynamics of Cu47Ti34Zr11Ni8, Zr52.5Cu17.9Ni14.6Al10Ti5 and Zr57Cu15.4Ni12.6Al10Nb5 bulk metallic glass forming alloys. J. Appl. Phys. 87(10), 7272 (2000).

    Google Scholar 

  30. J.P. Hirth, J. Lothe: Theory of Dislocations (McGraw-Hill, New York, 1967).

    Google Scholar 

  31. E.N. Mastrojannis, T. Mura, L.M. Keer: Stress-field of a planar elliptical dislocation loop. Philos. Mag. 35(4), 1137 (1977).

    CAS  Google Scholar 

  32. C.J. Gilbert, J.W. Ager, V. Schroeder, R.O. Ritchie, J.P. Lloyd, J.R. Graham: Light emission during fracture of a Zr-Ti-Ni-Cu-Be bulk metallic glass. Appl. Phys. Lett. 74(25), 3809 (1999).

    CAS  Google Scholar 

  33. Z.P. Lu, C.T. Liu: A new glass-forming ability criterion for bulk metallic glasses. Acta Mater. 50(13), 3501 (2002).

    CAS  Google Scholar 

  34. H. Kato, A. Inoue, H.S. Chen: Heating and structural disordering effects of the nonlinear viscous flow in a Zr55Al10Ni5Cu30 bulk metallic glass. Appl. Phys. Lett. 83(26), 5401 (2003).

    CAS  Google Scholar 

  35. X.H. Lin, W.L. Johnson, W.K. Rhim: Effect of oxygen impurity on crystallization of an undercooled bulk glass forming Zr-Ti-Cu-Ni-Al alloy. Mater. Trans. JIM 38(5), 473 (1997).

    CAS  Google Scholar 

  36. Z.P. Lu, C.T. Liu, J.R. Thompson, W.D. Porter: Structural amorphous steels. Phys. Rev. Lett. 92(24), 245503 (2004).

    CAS  Google Scholar 

  37. R. Busch, W. Liu, W.L. Johnson: Thermodynamics and kinetics of the Mg65Cu25Y10 bulk metallic glass forming liquid. J. Appl. Phys. 83(8), 4134 (1998).

    CAS  Google Scholar 

  38. Z.P. Lu, Y. Li, T. Liu: Glass-forming tendency of bulk La-Al-Ni-Cu-(Co) metallic glass-forming liquids. J. Appl. Phys. 93(2), 1 (2003).

    Google Scholar 

  39. I.R. Lu, G. Wilde, G.P. Gorler, R. Willnecker: Thermodynamic properties of Pd-based glass-forming alloys. J. Non-Cryst. Solids 250–252, 577 (1999).

    Google Scholar 

  40. G. Wilde, I.R. Lu, R. Willnecker: Fragility, thermodynamic properties, and thermal stability of Pd-rich glass forming liquids. Mater. Sci. Eng. A 375–377, 417 (2004).

    Google Scholar 

  41. R. Busch, Y.J. Kim, W.L. Johnson, A.J. Rulison, W.K. Rhim, D. Isheim: Hemispherical total emissivity and specific heat capacity of deeply undercooled Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 melts. Appl. Phys. Lett. 66(23), 3111 (1995).

    CAS  Google Scholar 

  42. D. Okai, T. Fukami, T. Yamasaki, T. Zhang, A. Inoue: Temperature dependence of heat capacity and electrical resistivity of Zr-based bulk glassy alloys. Mater. Sci. Eng. A 375–377, 364 (2004).

    Google Scholar 

  43. Z.P. Lu and C.T. Liu: (unpublished data).

  44. C.A. Schuh, T.G. Nieh: A survey of instrumented indentation studies on metallic glasses. J. Mater. Res. 19(1), 46 (2004).

    CAS  Google Scholar 

  45. Y. Li: (unpublished data).

  46. W. Johnson L.: Bulk metallic glasses: An emerging engineering material. JOM 40(2002).

  47. T. Mukai, T.G. Nieh, Y. Kawamura, A. Inoue, K. Higashi: Effect of strain rate on compressive behavior of a Pd40Ni40P20 bulk metallic glass. Intermetallics 10, 1071 (2002).

    CAS  Google Scholar 

  48. M. Calin, J. Eckert, L. Schultz: Improved mechanical behavior of Cu-Ti-based bulk metallic glass by in situ formation of nanoscale precipitates. Scripta Mater. 48, 653 (2003).

    CAS  Google Scholar 

  49. H. Kato, A. Inoue: Synthesis and mechanical properties of bulk amorphous Zr-Al-Ni-Cu alloys containing ZrC particles. Mater. Trans. JIM 38, 793 (1997).

    CAS  Google Scholar 

  50. J.G. Wang, B.W. Choi, T.G. Nieh, C.T. Liu: Crystallization and nanoindentation behavior of a bulk Zr-Al-Ti-Cu-Ni amorphous alloy. J. Mater. Res. 15, 798 (2000).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. G. Nieh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, B., Liu, C.T., Nieh, T.G. et al. Localized heating and fracture criterion for bulk metallic glasses. Journal of Materials Research 21, 915–922 (2006). https://doi.org/10.1557/jmr.2006.0124

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2006.0124

Navigation