Skip to main content
Log in

Determination of band gap in polycrystalline Si/Ge thin film multilayers

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The valence band (VB) photoemission supported by ultraviolet-visible-near infrared spectroscopy techniques were used to determine the band gap values of polycrystalline Si and Ge single layers as well as of Si/Ge multilayer structures. The band gap values obtained from VB photoemission measurements for these structures were found to be much larger than their corresponding bulks and to match well with those determined from standard optical absorption measurements. In each case, the VB offset values were obtained by considering the corresponding VB maximum as a reference. The increase in band gap in case of thin single layers of Si and Ge with respect to bulks were interpreted in terms of quantum confinement effect, while in case of multilayer sample, the effect of various factors such as (i) intermixing leading to the formation of SiGe alloy, (ii) roughness at the interface, (iii) particle size, and (iv) strain seem to play an important role in the observed change in band gap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Peressi, N. Binggeli, A. Baldereschi: Band engineering at interfaces: Theory and numerical experiments. J. Phys. D: Appl. Phys. 31, 1273 (1998).

    Article  CAS  Google Scholar 

  2. S.P. Wilks: Engineering and investigating the control of semiconductor surfaces and interfaces. J. Phys. D: Appl. Phys. 35, R77 (2002).

    Article  CAS  Google Scholar 

  3. Q.C. Sun, L.K. Pan, Y.Q. Fu, B.K. Tay, S. Li: Size dependence of the 2p-level shift of nanosolid silicon. J. Phys. Chem. B 107, 5113 (2003).

    Article  CAS  Google Scholar 

  4. M. Kim, H.J. Osten: X-ray photoelectron spectroscopic evaluation of valence band offsets for strained Si1−xGex, Si1−yCy and Si1−xyGexCy on Si(001). Appl. Phys. Lett. 70, 2702 (1997).

    Article  CAS  Google Scholar 

  5. M. Pan, S.P. Wilks, P.R. Dunstan, M. Pritchard, R.H. Williams, D.S. Cammack, S.A. Clark: Modification of band offsets by a ZnSe intralayer at the Si/Ge(111) interface. Appl. Phys. Lett. 72, 2707 (1998).

    Article  CAS  Google Scholar 

  6. S.M. Sze: Physics of Semiconductor Devices, 2nd ed. (Wiley-Interscience, Hoboken, NJ, 1981).

    Google Scholar 

  7. R.C. Miller, D.A. Kleinman, A.C. Gossard: Energy-gap discontinuities and effective masses for GaAs-AlxGa1−xAs quantum wells. Phys. Rev. B 29, 7085 (1984).

    Article  CAS  Google Scholar 

  8. E.A. Kraut, R.W. Grant, J.R. Waldrop, S.P. Kowalczyk: Semiconductor core-level to valence band maximum binding-energy differences: Precise determination by x-ray photoelectron spectroscopy. Phys. Rev. B 28, 1965 (1983).

    Article  CAS  Google Scholar 

  9. J. Weber, M.I. Alonso: Near-band gap photoluminescence of Si-Ge alloys. Phys. Rev. B 40, 5683 (1989).

    Article  CAS  Google Scholar 

  10. R. Braunstein, A.R. Moore, F. Herman: Intrinsic optical absorption in germanium-silicon alloys. Phys. Rev. 109, 695 (1958).

    Article  CAS  Google Scholar 

  11. M.M. Rieger, P. Vogl: Electronic-band parameters in strained Si1−xGex alloys on Si1−yGey substrates. Phys. Rev. B 48, 14276 (1993).

    Article  CAS  Google Scholar 

  12. R. People, J.C. Bean: Band alignments of coherently strained GexSi1−x/Si heterostructures on <001> GeySi1−y substrates. Appl. Phys. Lett. 48, 538 (1986).

    Article  CAS  Google Scholar 

  13. G. Theodorou, P.C. Kelires, C. Tserbak: Structural, electronic, and optical properties of strained Si1−xGex alloys. Phys. Rev. B 50, 18355 (1994).

    Article  CAS  Google Scholar 

  14. G.C. Van Walle, R.M. de Martin: Theoritical study of Si/Ge interfaces. J. Vac. Sci. Technol. B 3, 1256 (1985).

    Article  Google Scholar 

  15. L. Colombo, R. Resta, S. Baroni: Valence band offsets at strained Si/Ge interfaces. Phys. Rev. B 44, 5572 (1991).

    Article  CAS  Google Scholar 

  16. Di L. Gaspare, G. Capellini, M. Sebastiani, C. Chudoba, F. Evangelisti: Ge/Si(100) heterostructures: a photoemission and low-energy yield spectroscopy investigation. Appl. Surf. Sci. 102, 94 (1996).

    Article  Google Scholar 

  17. R. Zachai, K. Eberl, G. Abstreiter, E. Kasper, H. Kibbel: Photoluminescence in short-period Si/Ge strained-layer superlattices. Phys. Rev. Lett. 64, 1055 (1990).

    Article  CAS  Google Scholar 

  18. G.P. Schwartz, M.S. Hybertsen, J. Bevk, R.G. Nuzzo, J.P. Mannaerts, G.J. Gualtieri: Core-level photoemission measurements of valence-band offsets in highly strained heterojunctions: Si–Ge system. Phys. Rev. B 39, 1235 (1989).

    Article  CAS  Google Scholar 

  19. S.M. Chaudhari, N. Suresh, D.M. Phase, A. Gupta, B.A. Dasannacharya: Design and performance of an ultrahigh vacuum system for metallic multilayers. J. Vac. Sci. Technol. A 17, 242 (1999).

    Article  CAS  Google Scholar 

  20. S.M. Chaudhari, D.M. Phase, A.D. Wadikar, G.S. Ramesh, M.S. Hegde, B.A. Dasannacharya: Photoelectron spectroscopy beamline on INDUS-1 synchrotron source. Curr. Sci. 82, 305 (2002).

    CAS  Google Scholar 

  21. A.D. Laine, C. Cepek, A. Goldoni, S. Vandre, M. DeSeta, N. Franco, J. Avila, M.C. Asensio, M. Sancrotti: Photoemission of Ge (110) at room and high temperature. Surf. Sci. 402–404, 875 (1998).

    Article  Google Scholar 

  22. W.D. Grobman, D.E. Eastman: Absolute conduction- and valence-band positions for Ge from an anisotropic model of photoemission. Phys. Rev. Lett. 33, 1034 (1974).

    Article  CAS  Google Scholar 

  23. A.J. Williamson, C. Bostedt, T. van Buuren, T.M. Willey, L.J. Terminello, G. Galli: Probing the electronic density of states of germanium nanoparticles: A method for determining atomic structure. Nano Lett. 4, 1041 (2004).

    Article  CAS  Google Scholar 

  24. C. Bostedt, T. van Buuren, T.M. Willey, N. Franco, T. Moller, L.J. Terminello: Photoemission spectroscopy of germanium nanocrystal films. J. Elec. Spec. Relat. Phenom. 126, 117 (2002).

    Article  CAS  Google Scholar 

  25. S. Sato, S. Nozaki, H. Morisaki: Density of states of the tetragonal-phase germanium nanocrystals using x-ray photoelectron spectroscopy. Appl. Phys. Lett. 72, 2460 (1998).

    Article  CAS  Google Scholar 

  26. J.J. Yeh In Atomic Calculations of Photoionization Cross-Sections and Asymmetry Parameters (Gordon and Breach Science Publishers, Langhorne, PA, 1993).

    Google Scholar 

  27. L. Ley, S. Kowalczyk, R. Pollak, D.A. Shirley: X-ray photoemission spectra of crystalline and amorphous Si and Ge valence bands. Phys. Rev. Lett. 29, 1088 (1972).

    Article  CAS  Google Scholar 

  28. S.A. Chambers, T. Droubay, T.C. Kaspar, M. Gutowski: Experimental determination of valence band maxima for SrTiO3, TiO2, and SrO and the associated valence band offsets with Si(001). J. Vac. Sci. Technol. B 22, 2205 (2004).

    Article  CAS  Google Scholar 

  29. T. Van Buuren, L.N. Dinh, L.L. Chase, W.J. Siekhaus, L.J. Terminello: Changes in the electronic properties of Si nanocrystals as a function of particle size Phys. Rev. Lett. 80, 3803 (1998).

    Article  Google Scholar 

  30. S.J. Wang, A.C.H. Huan, Y.L. Foo, J.W. Chai, J.S. Pan, Q. Li, Y.F. Dong, Y.P. Feng, C.K. Ong: Energy-band alignments at ZrO2/Si, SiGe and Ge interfaces. Appl. Phys. Lett. 85, 4418 (2004).

    Article  CAS  Google Scholar 

  31. S. Ogut, J.R. Chelikowsky, S.G. Louie: Quantum confinement and optical gaps in Si nanocrystals. Phys. Rev. Lett. 79, 1770 (1997).

    Article  CAS  Google Scholar 

  32. Q.C. Sun, T.P. Chen, B.K. Tay, S. Li, H. Haung, Y.B. Zhang, L.K. Pan, S.P. Lau, X.W. Sun: An extended quantum confinement theory: Surface-coordination imperfection modifies the entire band structure of a nanosolid. J. Phys. D: Appl. Phys. 34, 3470 (2001).

    Article  CAS  Google Scholar 

  33. Y.M. Niquet, G. Allan, C. Delerue, M. Lannoo: Quantum confinement in germanium nanocrystals. Appl. Phys. Lett. 77, 1182 (2000).

    Article  CAS  Google Scholar 

  34. B. Marsen, M. Lonfat, P. Scheier, K. Sattler: Energy gap of silicon clusters studied by scanning tunneling spectroscopy. Phys. Rev. B 62, 6892 (2000).

    Article  CAS  Google Scholar 

  35. B. Delley, E.F. Steigmeier: Size dependence of bandgaps in silicon nanostructures. Appl. Phys. Lett. 67, 2370 (1995).

    Article  CAS  Google Scholar 

  36. T. VanBuuren, T. Tiedje, J.R. Dahn, B.M. Way: Photoelectron spectroscopic measurements of the band gap in porous silicon. Appl. Phys. Lett. 63, 2911 (1993).

    Article  CAS  Google Scholar 

  37. Y. Ishikawa, K. Wada, D.D. Cannon, J. Liu, H.C. Luan, L.C. Kimerling: Strain-induced bandgap shrinkage in Ge grown on Si substrate. Appl. Phys. Lett. 82, 2044 (2003).

    Article  CAS  Google Scholar 

  38. D.L. Beke, G.A. Langer, M. Kis-Varga, A. Dudas, P. Nemes, L. Daroczi, G. Kerekes., Z. Erdelyi: Thermal stability of amorphous and crystalline multilayers produced by magnetron sputtering. Vacuum 50, 373 (1998).

    Article  CAS  Google Scholar 

  39. S. Veprek, F.A. Sarott, Z. Iqbal: Effect of grain boundaries on the Raman spectra, optical absorption and elastic light scattering in nanometer-sized crystalline silicon. Phys. Rev. B 36, 3344 (1987).

    Article  CAS  Google Scholar 

  40. S. Kumar, H.J. Trodahl: Raman spectroscopy studies of progressively annealed amorphous Si/Ge superlattices. J. Appl. Phys. 70, 3088 (1991).

    Article  CAS  Google Scholar 

  41. P.D. Persans, A.F. Ruppert, Y.J. Wu, B. Abeles, W. Lanford, V. Pantoias: Stability of tetrahedrally bonded amorphous semiconductor multilayers. J. Non-Cryst. Solids 114, 771 (1989).

    Article  CAS  Google Scholar 

  42. J. Olivares, P. Martin, A. Rodriguez, J. Sangrador, J. Jimenez, T. Rodriguez: Raman spectroscopy study of amorphous SiGe flms deposited by low pressure chemical vapor deposition and polycrystalline SiGe flms obtained by solid-phase crystallization. Thin Solid Films 358, 56 (2000).

    Article  CAS  Google Scholar 

  43. T.P. Pearsall, L. Colace, A. DiVergilio, W. Jager, D. Stenkamp, G. Theodorou, H. Presting, E. Kasper, K. Thonke: Spectroscopy of band-to-band optical transitions in Si-Ge alloys and superlattices. Phys. Rev. B 57, 9128 (1998).

    Article  CAS  Google Scholar 

  44. G. Tamizhmani, M. Cocivera, R.T. Oakley, C. Fischer, M. Fujimoto: Physical characterization of a-Si thin films deposited by thermal decomposition of iodosilanes. J. Phys. D: Appl. Phys. 24, 1015 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Tripathi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tripathi, S., Brajpuriya, R., Mukharjee, C. et al. Determination of band gap in polycrystalline Si/Ge thin film multilayers. Journal of Materials Research 21, 623–631 (2006). https://doi.org/10.1557/jmr.2006.0096

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2006.0096

Navigation