Skip to main content

Advertisement

Log in

Bioactive comparison of a borate, phosphate and silicate glass

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A borate glass, phosphate glass, and silicate glass were converted to hydroxyapatite (HA) by soaking the substrates in a solution of K2HPO4 with a pH value of 9.0 at 37 °C. The weight loss of the substrates was studied as a function of time. Unlike the silicate glasses, the reaction processes of the borate glasses and phosphate glasses were bulk dissolution. X-ray diffraction and scanning electron microscopy revealed an initially amorphous product that subsequently crystallized to HA. The data suggest good bioactive characteristics for the borate and phosphate glass and the potential use of them as a favorable template for bone-tissue formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Tadashi, K. Hyun-Min and K. Masakazu: Novel bioactive materials with different mechanical properties. Biomater. 24, 2161 (2003).

    Article  Google Scholar 

  2. E.N. Özgür and T.A. Cüneyt: Preparation of porous Ca10(PO4)6(OH)2 and β–Ca3(PO4)2. J. Am. Ceram. Soc. 83, 1581 (2000).

    Google Scholar 

  3. H.K.X. Hockin, B.Q. Janet, T. Shozo and C.C. Laurence: Synergistic reinforcement of in situ hardening calcium phosphate composite scaffold for bone tissue engineering. Biomaterials 25, 1029 (2004).

    Article  Google Scholar 

  4. S. Lossdörfer, Z. Schwartz, C.H. Lohmann, D.C. Greenspan, D.M. Ranly and B.D. Boyan: Osteoblast response to bioactive glasses in vitro correlates with inorganic phosphate content. Biomaterials 25, 2547 (2004).

    Article  Google Scholar 

  5. H. Ylanen and K.H. Karlsson: Effect of immersion in SBF on porous bioactive bodies made by sintering bioactive glass microspheres. J. Non-Cryst. Solids 275, 107 (2000).

    Article  CAS  Google Scholar 

  6. N. Olmo, A.I. Martín, A.J. Salinas, J. Turnay, M. Vallet-Regí and M.A. Lizarbe: Bioactive sol-gel glasses with and without a hydroxycarbonate apatite layer as substrates for osteoblast cell adhesion and proliferation. Biomaterials 24, 3383 (2003).

    Article  CAS  Google Scholar 

  7. H. Oonishi, L.L. Hench, J. Wilson, F. Sugihara, E. Tsuji and M. Matsuura: Quantitative comparison of bone growth behavior in granules of Bioglass, A-W glass-ceramic, and hydroxyapatite. J. Biomed. Mater. Res. 51, 37 (2000).

    Article  CAS  Google Scholar 

  8. M. Brink, T. Turunen, R.P. Happonen and Y.U. Antti: Compositional dependence of bioactivity of glasses in the system Na2O–K2O–MgO–CaO–B2O3–P2O5–SiO2. J. Biomed. Mater. Res. 37, 114 (1997).

    Article  CAS  Google Scholar 

  9. F. Shunsuke and N. Masashi: A comparative study between in vivo bone ingrowth and in vitro apatite formation on Na2O–CaO–SiO2 glasses. Biomaterials 24, 1349 (2003).

    Article  Google Scholar 

  10. J.E. Gougha, J.R. Jones and L.L. Hench: Nodule formation and mineralisation of human primary osteoblasts cultured on a porous bioactive glass scaffold. Biomaterials 25, 2039 (2004).

    Article  Google Scholar 

  11. J.R. Jones and L.L. Hench: Effect of surfactant concentration and composition on the structure and properties of sol-gel-derived bioactive glass foam scaffolds for tissue engineering. J. Mater. Sci. 38, 3783 (2003).

    Article  CAS  Google Scholar 

  12. P. Li, C. Ohtsuki and T. Kokubo: Apatite formation induced by silica gel in a simulated body fluid. J. Am. Ceram. Soc. 75, 2094 (1992).

    Article  CAS  Google Scholar 

  13. K.H. Karlsson, K. Froberg and T. Ringbom: A structure approach to bone adhering of bioactive glasses. J. Non-Cryst. Solids 112, 69 (1989).

    Article  Google Scholar 

  14. L.A. Mortin and R.M. Shelton: Primary bone-derived cell colonization of unconditioned and pre-conditioned bioglass 45S5 surface in vitro. J. Mater. Sci.-Mater. Med. 14, 297 (2003).

    Article  CAS  Google Scholar 

  15. J.A. Juhasz, S.M. Best, W. Bonfield, M. Kawashita, N. Miyata, T. Kokubo and T. Nakamura: Apatite-forming ability of glass-ceramic apatite-wollastonite-polythylene composites: Effect of filler content. J. Mater. Sci.-Mater. Med. 14, 489 (2003).

    Article  CAS  Google Scholar 

  16. D.C. Clupper, J.E. Gough, P.M. Embanga, I. Notingher, L.L. Hench and M.M. Hall: Bioactive evaluation of 45S5 bioactive glass fibres and preliminary study of human osteoblast attachment. J. Mater. Sci.-Mater. Med. 15, 803 (2004).

    Article  CAS  Google Scholar 

  17. I. Ahmed, M. Lewis, I. Olsen and J.C. Knowles: Phosphate glasses for tissue engineering: Part 2. Processing and characterisation of a ternary-based P2O5–CaO–Na2O glass fiber system. Biomaterials 25, 501 (2004).

    Article  CAS  Google Scholar 

  18. D.E. Day, J.E. White, R.F. Brown and K.D. McMenamin: Transformation of borate glasses into biologically useful materials. Glass Technol. 44, 75 (2003).

    CAS  Google Scholar 

  19. X. Han Reaction of sodium calcium borate glass to form hydroxyapatite and preliminary evolution of hydroxyapatite microspheres used to absorb and separate proteins. Master’s Thesis, University of Missouri-Rolla, Rolla, MO (2002).

    Google Scholar 

  20. M.N. Richard Reaction of a borate glass with K2HPO4 solutions. Master’s Thesis, University of Missouri-Rolla, MO (2000).

    Google Scholar 

  21. F. Delahaye, L. Montagne and G. Palavit: Acid dissolution of sodium calcium metaphosphate glasses. J. Non-Cryst. Solids 242, 25 (1998).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Liang.

Additional information

Address all correspondence to this author.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, W., Christian, R., Day, D.E. et al. Bioactive comparison of a borate, phosphate and silicate glass. Journal of Materials Research 21, 125–131 (2006). https://doi.org/10.1557/jmr.2006.0025

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2006.0025

Navigation