Skip to main content
Log in

Combustion synthesis of metal carbides: Part I. Model development

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The definition of a rigorous theoretical framework for the appropriate physico-chemical description of self-propagating high-temperature synthesis (SHS) processes represents the main goal of this work which is presented in two sequential articles. In this article, a novel mathematical model to simulate SHS processes is proposed. By adopting a heterogeneous approach for the description of mass transfer phenomena, the model is based on appropriate mass and energy conservation equations for each phase present during the system evolution. In particular, it takes microstructural evolution into account using suitable population balances and properly evaluating the different driving forces from the relevant phase diagram. The occurrence of phase transitions is treated on the basis of the so-called enthalpy approach, while a conventional nucleation-and-growth mechanistic scenario is adopted to describe quantitatively the formation of reaction products. The proposed mathematical model may be applied to the case of combustion synthesis processes involving a low melting point reactant and a refractory one, as for the synthesis of transition metal carbides from pure metal and graphite. Thus, the model can be profitably used to gain a deeper insight into the microscopic elementary phenomena involved in combustion synthesis processes through a suitable combination of experimental and modeling investigations, as it may be seen in Part II of this work [J. Mater. Res. 20, 1269 (2005)].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. F. Booth: The theory of self-propagating exothermic reactions in solid systems. Trans. Faraday Soc. 49, 272 (1953).

    Article  CAS  Google Scholar 

  2. J.D. Walton and N.E. Poulos: Cermets from thermite reactions. J. Am. Ceram. Soc. 42, 40 (1959).

    Article  CAS  Google Scholar 

  3. A.G. Merzhanov and I.P. Borovinskaya: Self-propagating hightemperature synthesis of refractory inorganic compounds. Dokl. Akad. Nauk SSSR 204, 366 (1972).

    CAS  Google Scholar 

  4. A. Varma, A.S. Rogachev, A.S. Mukasyan, and S. Hwang: Combustion synthesis of advanced materials: Principles and applications. Adv. Chem. Eng. 24, 79 (1998).

    Article  CAS  Google Scholar 

  5. J.J. Moore and H.J. Feng: Combustion synthesis of Advanced Materials: Part I. Reaction parameters. Prog. Mater. Sci. 39, 243 (1995).

    Article  CAS  Google Scholar 

  6. J.J. Moore and H.J. Feng: Combustion synthesis of Advanced Materials: Part II. Classification, application and modeling. Prog. Mater. Sci. 39, 275 (1995).

    Article  CAS  Google Scholar 

  7. B.V. Novozhilov: The rate of propagation of the front of an exothermic reaction in a condensed phase. Dokl. Akad. Nauk SSSR. 141, 151 (1961).

    Google Scholar 

  8. B.I. Khaikin and A.G. Merzhanov: Theory of thermal propagation of a chemical reaction front. Fiz. Goreniya Vzryva. 2(3), 36 (1966).

    Google Scholar 

  9. A.G. Merzhanov: New elementary model of the second kind. Dokl. Akad. Nauk SSSR 233(6), 1130 (1977).

    CAS  Google Scholar 

  10. S.B. Margolis: An asymptotic theory of condensed two-phase flame propagation. SIAM J. Appl. Math. 43, 351 (1983).

    Article  Google Scholar 

  11. G. Cao, and A. Varma: A new expression for velocity of the combustion front during self-propagating high-temperature synthesis. Combust. Sci. Technol. 102, 181 (1994).

    Article  CAS  Google Scholar 

  12. G.M. Makhviladze and B.V. Novozilov: Two-dimensional stability of combustion of condensed systems. Zh. Prikl. Mekh. I Tekhn. Fiz. 5, 51 (1971).

    Google Scholar 

  13. K.G. Shkadinskii, B.I. Khaikin, and A.G. Merzhanov: Propagation of a pulsating exothermic reaction front in the condensed phase. Fiz. Goreniya Vzryva. 8, 202 (1971).

    Google Scholar 

  14. A.P. Aldushin, V.D. Lugovoi, A.G. Merzhanov, and B.I. Khaikin: Conditions of stationary combustion wave degradation. Dokl. Akad. Nauk SSSR 243, 1434 (1978).

    Google Scholar 

  15. B.J. Matkowsky and G.L. Sivanshinsky: Propagation of a pulsating reaction front in solid fuel combustion. SIAM J. Appl. Math. 35, 465 (1978).

    Article  Google Scholar 

  16. J.A. Puszynski, J. Degreve, and V. Hlavacek: Modeling of exothermic solid-solid noncatalytic reactions. Ind. Eng. Chem. Res. 26, 1424 (1987).

    Article  CAS  Google Scholar 

  17. A.M. Kanury: A kinetic model for metal + nonmetal reactions. Metall. Trans. 23A, 2349 (1992).

    Article  CAS  Google Scholar 

  18. A.K. Bhattacharya: Temperature enthalpy approach to the modeling of self-propagating combustion synthesis of materials. J. Mater. Sci. 27(11), 3050 (1992).

    Article  CAS  Google Scholar 

  19. A.S. Astapchik, E.P. Podvoisky, I.S. Chebotko, B.M. Khusid, A.G. Merzhanov, and B.B. Khina: Stochastic model for wavelike isothermal reaction in condensed heterogeneous systems. Phys. Rev. E 47(1), 319 (1993).

    Article  CAS  Google Scholar 

  20. S. Hwang, A.S. Mukasyan, A.S. Rogachev, and A. Varma: Combustion wave microstructure in gas-solid system: Experiments and theory. Combust. Sci. Technol. 123, 165 (1997).

    Article  CAS  Google Scholar 

  21. E.A. Nekrasov, Y.M. Maksimov, and A.P. Aldushin: Mathematical model of combustion of a titanium-carbon system. Fiz. Goreniya Vzryva. 17(5), 39 (1981).

    CAS  Google Scholar 

  22. A. Makino: Fundamental aspects of the heterogeneous flame in the self-propagating high-temperature synthesis (SHS) process. Prog. Energy Combust. Sci. 27(1), 1 (2001).

    Article  CAS  Google Scholar 

  23. V.I. Yukhvid, S.V. Makladov, P.V. Zhirkov, V.A. Gorshkov, N.I. Timokhin, and A.Y. Dovzhenko: Combustion synthesis and structure formation in a model Cr–CrO3 self-propagating hightemperature synthesis system. J. Mater. Sci. 32, 1915 (1997).

    Article  CAS  Google Scholar 

  24. Y. Zhang and G.C. Stangle: A micromechanistic model of the combustion synthesis process: Part I. Theoretical development. J. Mater. Res. 9, 2582 (1994).

    Google Scholar 

  25. Y. Zhang and G.C. Stangle: A micromechanistic model of the combustion synthesis process: Part II. Numerical simulation. J. Mater. Res. 9, 2605 (1994).

    Article  CAS  Google Scholar 

  26. Y. Zhang and G.C. Stangle: A micromechanistic model of microstructure development during the combustion synthesis process. J. Mater. Res. 10, 962 (1995).

    Article  CAS  Google Scholar 

  27. A.M. Locci, A. Cincotti, F. Delogu, R. Orrù, and G. Cao: Combustion synthesis of metal carbides: Part II. Numerical simulation and comparison with experimental data. J. Mater. Res. 20, 1269 (2005).

    Article  CAS  Google Scholar 

  28. A.M. Locci, A. Cincotti, F. Delogu, R. Orrù, and G. Cao: Modeling of Self-propagating reaction: past approaches and future directions. Int. J. of SHS 12, 61 (2003).

    CAS  Google Scholar 

  29. A.M. Locci, A. Cincotti, F. Delogu, R. Orrù, and G. Cao: Advanced modeling of self-propagating high-temperature synthesis: the case of the Ti–C system. Chem. Eng. Sci. 59, 5121 (2004).

    Article  CAS  Google Scholar 

  30. H. Fan, H. Chai, and Z. Jin: Dual-solution precipitation mechanism of combustion synthesis of TiC-Fe cermet with finer Ti powder. J. Mater. Sci. 36, 5559 (2001).

    Article  CAS  Google Scholar 

  31. H. Fan, H. Chai, and Z. Jin: Dissolution-precipitation mechanism of self-propagating high-temperature synthesis of mononickel aluminide. Intermetallics 9, 609 (2001).

    Article  CAS  Google Scholar 

  32. J.B. Holt and Z.A. Munir: Combustion synthesis of titanium carbide: Theory and experiment. J. Mater. Sci. 21, 251 (1986).

    Article  CAS  Google Scholar 

  33. Binary Phase Diagrams, edited by T.B. Massalski (American Society for Metals, Metals Park, OH, 1986).

    Google Scholar 

  34. J.A. Dirksen and T.A. Ring: Fundamental of crystallization: Kinetic effects on particle size distributions and morphology. Chem. Eng. Sci. 46, 2389 (1991).

    Article  CAS  Google Scholar 

  35. A.D. Randolph and M.A. Larson: Theory of Particulate Process: Analysis and Techniques of Continuous Crystallization, 2nd ed. (Academic Press, San Diego, CA, 1988).

    Google Scholar 

  36. D. Ramkrishna: Population Balances, Theory and Application to Particulate System in Engineering (Academic Press, London, U.K., 2000).

    Google Scholar 

  37. H.M. Hulburt, and S. Katz: Some problem in particle technology: A statistical mechanical formulation. Chem. Eng. Sci. 19, 555 (1964).

    Article  CAS  Google Scholar 

  38. M.T. Clavaguera-Mora, N. Clavaguera, D. Crespo, and T. Pradell: Crystallization kinetics and microstructure development in metallic systems. Prog. Mater. Sci. 47, 559 (2002).

    Article  CAS  Google Scholar 

  39. J.E. Gatica, P.A. Dimitriou, J.A. Puszynski, and V. Hlavacek: Melting effects on reaction front propagation in gasless combustion. Int. J. SHS 4, 123 (1995).

    CAS  Google Scholar 

  40. R.B. Bird, W.E. Stewart, and E.N. Lightfoot: Transport Phenomena (Wiley, New York, NY, 1960).

    Google Scholar 

  41. F.A.L. Dullien: Porous Media: Fluid Transport and Pore Structure, 2nd ed. (Academic Press Inc., San Diego, CA, 1992).

    Google Scholar 

  42. J. Szekely and N.J. Themelis: Rate Phenomena in Process Metallurgy (John Wiley & Sons, New York, NY, 1971).

    Google Scholar 

  43. A.V. Luikov, A.G. Shashkov, L.L. Vasiliev, and Y.E. Fraiman: Thermal conductivity of porous systems. Int. J. Heat Mass Transf. 11, 117 (1968).

    Article  Google Scholar 

  44. C.T. Hsu, P. Cheng, and K.W. Wong: Modified Zehner–Schlunder models for stagnant thermal conductivity of porous media. Int. J. Heat Mass Transf. 37, 2751 (1994).

    Article  Google Scholar 

  45. B.P. Singh, and M. Kaviany: Effect of solid conductivity on radiative heat transfer in packed beds. Int. J. Heat Mass Transfer. 37, 2579 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Cincotti or G. Cao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Locci, A.M., Cincotti, A., Delogu, F. et al. Combustion synthesis of metal carbides: Part I. Model development. Journal of Materials Research 20, 1257–1268 (2005). https://doi.org/10.1557/JMR.2005.0152

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.2005.0152

Navigation