Skip to main content
Log in

Role of Sr Addition on the Structure Stability and Electrical Conductivity of Sr-Doped Lanthanum Copper Oxide Perovskites

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The structural and electrical properties of lanthanum copper oxide were examined as a function of Sr addition. It was observed that the lanthanum oxide and copper oxide formed La2CuO4 with K2NiF4 structure when the powder mixture was heated at 800 °C in ambient pressure. Interestingly, the samples of Sr-doped (15∼25%) lanthanum copper oxides showed single perovskite-based phase after being heated at 800 °C. Without Sr addition, a single-perovskite phase of lanthanum copper oxide was observed only under the oxygen pressure as high as 65 kbar. The stabilization of perovskite structure in lanthanum copper oxide was effectively achieved by the addition of Sr. Based on the titration analysis and pertinent defect reactions, the enhancement of perovskite stability was due to the presence of trivalent copper ions that were created to balance the electrical charge of doping ion (SrLa′). With the increasing concentration of trivalent copper ions (or electron holes equivalently) in Sr-doped samples, lanthanum copper oxide also changed from a semiconductor to metallic conductor. When the Sr dopant exceeded its solubility limit of approximately 25% in the A-site sublattice, the Sr-rich second phases, La2SrCu2O6 and Cu2SrO3, appeared and suppressed the electronic conduction drastically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Nguyen, J. Choisnet, M. Hervieu, and B. Raveau, J. Solid State Chem. 39, 120 (1981).

    Article  CAS  Google Scholar 

  2. R.M. Fleming, B. Batlogg, R.J. Cava, and E.A. Rietman, Phys. Rev. B 35, 7191 (1987).

    Article  CAS  Google Scholar 

  3. R.J. Cava, R.B. van Dover, B. Batlogg, and E.A. Rietman, Phys. Rev. Lett., 58, 408 (1987).

    Article  CAS  Google Scholar 

  4. G. Demazeau, C. Parent, M. Pouchard, and P. Hagenmuller, Mat. Res. Bull. 7, 913 (1972).

    Article  CAS  Google Scholar 

  5. J.F. Bringley, B.A. Scott, S.J. Placa, R.F. Boehme, T.M. Shaw, M.W. McElfresh, S.S. Trail, and D.E. Cox. Nature 347, 263 (1990).

    Article  CAS  Google Scholar 

  6. A.W. Webb, K.H. Kim, and C. Bouldin, Solid State Commun. 79, 507 (1991).

    Article  CAS  Google Scholar 

  7. J.F. Bringley, B.A. Scott, S.J. Placa, T.M. McGuire, and F. Mehran, Phys. Rev. B 47, 15269 (1993).

    Article  CAS  Google Scholar 

  8. S. Darracq, S. Matar, and G. Demazeau, Solid State Commun. 85, 961 (1993).

    Article  CAS  Google Scholar 

  9. S.J. Laplaca, J.F. Bringley, B.A. Scott, and D.E. Cox, Acta Crystallogr. Sect. C 49, 1415 (1993).

    Article  Google Scholar 

  10. K.R. Poeppelmeier, M.E. Leonowicz, J.C. Scanlon, and J.M. Longo, J. Solid State Chem. 45, 71 (1982).

    Article  CAS  Google Scholar 

  11. C. Michel, L. Er-Rakho, and B. Raveau, Mater. Res. Bull. 20, 667 (1987).

    Article  Google Scholar 

  12. A.N. Petrov, O.F. Kononchuk, A.V. Andreev, V.A. Cherepanov, and P. Kofstad, Solid States Ionics 80, 189 (1995).

    Article  CAS  Google Scholar 

  13. L. Er-Rakho, C. Michel, J. Provost, and B. Raveau, J. Solid State Chem. 37, 151 (1981).

    Article  CAS  Google Scholar 

  14. J. Remmel, J. Geerk, G. Linker, O. Meyer, R. Smithey, B. Strehlau, and G.C. Xiong, Physica C, 165, 212 (1990).

    Article  CAS  Google Scholar 

  15. T. Siegrist, S.M. Zahurac, D.W. Murphy, and R.S. Roth, Nature 334, 231 (1988).

    Article  CAS  Google Scholar 

  16. D.M. DeLeeuw, C.A.H.A. Mutsaers, G.P.J. Geelen, and C. Langereis, J. Solid State Chem. 80, 276 (1989).

    Article  CAS  Google Scholar 

  17. N. Murayama, S. Sakagugchi, F. Wakai, E. Sudo, A. Tsuzuki, and Y. Torii, Jpn. J. Appl. Phys. 27, L55 (1988).

    Article  CAS  Google Scholar 

  18. H.C. Yu and K.Z. Fung, Mater. Res. Bull. 38, 231 (2003).

    Article  CAS  Google Scholar 

  19. Y. Maeno, H. Teraoka, K. Matsukuma, K. Yoshida, K. Sugiyama, F. Nakamura, and T. Fujita, Physica C 185-189, 587 (1991).

    Article  CAS  Google Scholar 

  20. Z. Hiroi, J. Solid State Chem. 123, 223 (1996).

    Article  CAS  Google Scholar 

  21. A.I. Nazzal, V.Y. Lee, E.M. Engler, R.D. Jacowitz, Y. Tokura, and J.B. Torrance, Physica C 153-155, 1367 (1988).

    Article  CAS  Google Scholar 

  22. K. Otzschi, K. Koga, and Y. Ueda, J. Solid State Chem. 115, 490 (1995).

    Article  CAS  Google Scholar 

  23. H. Takagei, T. Ido, S. Ishibashi, M. Uota, and S. Uchida, Phys. Rev. B 40, 2254 (1989).

    Article  Google Scholar 

  24. K. Otzschi and Y. Ueda, J. Solid State Chem. 107, 149 (1993).

    Article  CAS  Google Scholar 

  25. J.B. Torrance, P. Lacorre, A.I. Nazzal, E.J. Ansaldo, and Ch. Niedermayer, Phys. Rev. B 46, 6382 (1992).

    Article  Google Scholar 

  26. Z. Hiroi and M. Takano, Nature 377, 41 (1995).

    Article  CAS  Google Scholar 

  27. S. Darracq, S.G. Kang, J.H. Choy, and G. Demazeau, J. Solid State Chem. 114, 88 (1995).

    Article  CAS  Google Scholar 

  28. G. Ch. Kostogloudis and Ch. Ftilos, Solid State Ionics 109, 43 (1998).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuan-Zong Fung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, HC., Fung, KZ. Role of Sr Addition on the Structure Stability and Electrical Conductivity of Sr-Doped Lanthanum Copper Oxide Perovskites. Journal of Materials Research 19, 943–949 (2004). https://doi.org/10.1557/jmr.2004.19.3.943

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2004.19.3.943

Navigation