Skip to main content
Log in

System Bi–Sr–O: Synergistic measurements of thermodynamic properties using oxide and fluoride solid electrolytes

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Phase equilibrium and electrochemical studies of the ternary system Bi–Sr–O indicate the presence of six ternary oxides (Bi2SrO4, Bi2Sr2O5, Bi2Sr3O6, Bi4Sr6O15, Bi14Sr24O52, and Bi2Sr6O11) and three solid solutions (δ, β, and γ). An isothermal section of the phase diagram is established at 1050 K by phase analysis of quenched samples. Three compounds, Bi4Sr6O15, Bi14Sr24O52, and Bi2Sr6O11, contain Bi5+ ions. The stability of these phases is a function of oxygen partial pressure. The chemical potentials of SrO in two-phase fields are determined as a function of temperature using solid-state cells based on single crystal SrF2 as the electrolyte. Measurement of the emf of cells based on SrF2 as a function of oxygen partial pressure in the gas at constant temperature gives information on oxygen content of the compounds present at the electrodes. The chemical potentials of Bi2O3 in two-phase fields of the pseudobinary Bi2O3–SrO are measured using cells incorporating (Y2O3)ZrO2 as the solid electrolyte. The standard free energies of formation of the ternary oxides are calculated independently using emfs of different cells. The independent assessments agree closely; the maximum difference in the value of of component binary oxides. The results are discussed in the light of the phase diagram and compared with calorimetric and chemical potential measurements reported in the literature. The combined use of emf data from cells incorporating fluoride and oxide electrolytes enhances the reliability of derived data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Guillermo, P. Conflant, J. C. Boivin, and D. Thomas, Rev. Chim. Mineral. 15, 153 (1978).

    CAS  Google Scholar 

  2. P. Conflant, M. Drache, J.P. Wignacourt, and J.C. Boivin, Mater. Res. Bull. 26, 1219 (1991).

    Article  CAS  Google Scholar 

  3. E. M. Levin and R. S. Roth, J. Res. Nat. Bur. Stand., Sec. A 68, 197 (1964).

    Article  Google Scholar 

  4. R. S. Roth, C. J. Rawn, B. P. Burton, and F. Beech, J. Res. Natl. Inst. Stand. Technol. 95, 291 (1990).

    Article  CAS  Google Scholar 

  5. N.M. Hwang, R.S. Roth, and C. J. Rawn, J. Am. Ceram. Soc. 73, 2531 (1990).

    Article  CAS  Google Scholar 

  6. E.Yu. Vstavskaya, A.Yu. Zuev, V.A. Chereponov, S. D. Sutton, and J. S. Abell, J. Phase Equil. 15, 573 (1994).

    Article  CAS  Google Scholar 

  7. F. Abbattista, C. Brisi, D. Mazza, and M. Vallino, Mater. Res. Bull. 26, 107 (1991).

    Article  CAS  Google Scholar 

  8. K.T. Jacob and T. Mathews, J. Mater. Chem. 1, 545 (1991).

    Article  CAS  Google Scholar 

  9. B. V. Slobodin, I. A. Ostapenko, and A. A. Fotiev, Inorg. Mater. 27, 2220 (1992).

    Google Scholar 

  10. K.T. Jacob and K. P. Jayadevan, Mater. Trans. JIM 38, 427 (1997).

    Article  CAS  Google Scholar 

  11. T. Takahashi, H. I. Iwahara, and Y. Nagai, J. Appl. Electrochem. 2, 97 (1972).

    Article  CAS  Google Scholar 

  12. M.V. Zinkevich, S.A. Prodan, Yu. G. Zonor, and V. V. Vashuk, Inorg. Mater. 31, 129 (1995).

    CAS  Google Scholar 

  13. T. Mathews, Ph.D. Thesis, Department of Metallurgy, Indian Institute of Science, Bangalore, India (1993).

  14. H.A. Harwig, Z. Anorg. Allg. Chem. 444, 151 (1978).

    Article  CAS  Google Scholar 

  15. D. Taylor, Trans. J. British Ceram. Soc. 83, 5 (1978).

    Google Scholar 

  16. K.J. Range, F. Rau, U. Schiessl, and U. Klement, Z. Anorg. Allg. Chem. 620, 879 (1994).

    Article  CAS  Google Scholar 

  17. B. Eisenmann and K. Deller, Z. Naturforsch 30B, 66 (1975).

    Article  CAS  Google Scholar 

  18. D. Mercurio, J. C. C. Mesjard, B. Frit, P. Conflant, J. C. Boivin, and T. Vogt, J. Solid State Chem. 112, 1 (1994).

    Article  CAS  Google Scholar 

  19. R.L. Withers and H. Rossel, J. Solid State Chem. 118, 66 (1995).

    Article  CAS  Google Scholar 

  20. T.A. M. Haemers and D. J.W. Ijdo, Mater. Res. Bull. 26, 989 (1991).

    Article  CAS  Google Scholar 

  21. C. C. Torardi, J. B. Parise, A. Santoro, C. J. Rawn, R. S. Roth, and B. P. Burton, J. Solid State Chem. 93, 228 (1991).

    Article  CAS  Google Scholar 

  22. P. Conflant and J. C. Boivin, C. R. Acad. Sci., Ser. C., Sci. Chim. 288, 161 (1979).

    CAS  Google Scholar 

  23. J. F. Vente, R. B. Helmholdt, and D. J. W. Ijdo, Acta Crystallogr. C48, 1380 (1992).

    CAS  Google Scholar 

  24. Bokhimi and M. Portilla, J. Solid State Chem. 105, 371 (1993).

    Article  CAS  Google Scholar 

  25. P. Conflant, M. Drache, M. Lagrenee, J. C. Boivin, and J. P. Wignacourt, Solid State Ionics 53–56, 592 (1992).

    Article  Google Scholar 

  26. Y. Ikeda, H. Ito, S. Shimomura, Y. One, K. Inaba, Z. Hiroi, and M. Takano, Physica C 159, 93 (1989).

    Article  CAS  Google Scholar 

  27. H. D. Baek and A. V. Virkar, J. Electrochem. Soc. 139, 3174 (1992).

    Article  CAS  Google Scholar 

  28. Y. Idemoto, K. Shizuka, Y. Yasuda, and K. Fueki, Physica C 211, 36 (1993).

    Article  CAS  Google Scholar 

  29. R. Horyn, M. Wolcyrz, and R. Andruszkiewicz, J. Alloys Compounds 191, 203 (1993).

    Article  CAS  Google Scholar 

  30. K. T. Jacob and T. Mathews, J. Am. Ceram. Soc. 75, 3225 (1992).

    Article  CAS  Google Scholar 

  31. T. Mathews, J.P. Hajra, and K. T. Jacob, Chem. Mater. 5, 1669 (1993).

    Article  CAS  Google Scholar 

  32. M. W. Chase, Jr., C. A. Davies, J. R. Downey, Jr., D. J. Fruip, R.A. McDonald, and A.N. Syverud, Janaf Thermochemical Tables, 3rd ed. J. Phys. Chem. Ref. Data 14, Supplements 1 and 2 (1985).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacob, K.T., Jayadevan, K.P. System Bi–Sr–O: Synergistic measurements of thermodynamic properties using oxide and fluoride solid electrolytes. Journal of Materials Research 13, 1905–1918 (1998). https://doi.org/10.1557/JMR.1998.0270

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1998.0270

Navigation