Skip to main content
Log in

Evidence for hydrothermal growth of diamond in the C–H–O and C–H–O halogen system

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Powder x-ray diffraction (XRD) and Raman evidence are presented for the formation of crystalline diamond in the “hydrothermal” pressure-temperature regime 1–5 kbars, <1000 °C. Two different methods appear to enable diamond to nucleate and grow. One—a Low Pressure Solid-State Source (LPSSS) route—utilizes special solid precursors, especially low temperature glassy carbon (GC-500), with very fine diamond seeds in sealed gold capsules with H2O at, say, 800 °C and 1 kbar. The other includes pyrolysis of highly selected organic solid/liquid precursors (halogenated aliphatics such as iodoform) onto similar diamond seeds. In all the cases, powder x-ray diffraction evidence shows a marked increase of the diamond XRD peaks, likewise the Raman spectrum shows a strong increase of the 1331 cm−1 line. However, the crystals apparently are too small to be seen in the SEM. TEM diffraction data, on the other hand, seem to lend support to the possibility of all the grown diamonds being very small.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. P. Bundy, H. T. Hall, H. M. Strong, and R. H. Wentorf, Jr., Nature (London) 176 (51) (1955).

  2. V. B. Spitsyn, L. L. Bouilov, and B. V. Derjaguin, Prog. Crystal Growth Charact. 17, 79 (1988); see also J. Crystl. Growth 52, 219 (1981); Diamond Relat. Mater. 1, 705 (1992).

    Article  CAS  Google Scholar 

  3. M. Kamo, Y. Sato, S. Matsumoto, and N. Setaka, J. Cryst. Growth 62, 642 (1983).

    Article  CAS  Google Scholar 

  4. R. Roy, H. S. Dewan, and P. Ravindranathan, J. Mater. Chem. 3 6, 685–686 (1993).

    Article  Google Scholar 

  5. R. Roy, H. S. Dewan, and P. Ravindranathan, Mater. Res. Bull. 28, 861–866 (1993).

    Article  CAS  Google Scholar 

  6. R. Roy, H. S. Dewan, K. A. Cherian, J. P. Cheng, A. Badzian, W. Drawl, and C. Langlade, Mater. Lett. 25, 191–193 (1995).

    Article  CAS  Google Scholar 

  7. (a) D. Roy, R. Datta, S. Faile, and O. F. Tuttle, J. Am. Ceram. Soc. 47, 153 (1964). (b) S. E. Ragone, R. Datta, D. Roy, and O. F. Tuttle, J. Phys. Chem. 70, 3360 (1966).

    Article  Google Scholar 

  8. R. C. DeVries, in Advanced Ceramics III, edited by S. Somiya (Elsevier Applied Science, London and New York, 1990), pp. 181–205. (Paper was presented in Tokyo, Japan 1988.)

  9. R. C. DeVries, R. Roy, S. Somiya, and S. Yamada, Trans. Mater. Res. Soc. Jpn. 19B, 641–667 (1994).

    CAS  Google Scholar 

  10. A. Szymanski, E. Abgorowicz, A. Bakon, A. Nidbalska, R. Salacinski, and J. Sentek, Diamond Relat. Mater. 4, 234–235 (1995).

    Article  CAS  Google Scholar 

  11. N. V. Sobolev and V. S. Shatskii, Geol. Geofiz. 7, 77–80 (1987).

    Google Scholar 

  12. N. V. Sobolev and V. S. Shatskii, Nature (London) 343, 742–745 (1990).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roy, R., Ravichandran, D., Ravindranathan, P. et al. Evidence for hydrothermal growth of diamond in the C–H–O and C–H–O halogen system. Journal of Materials Research 11, 1164–1168 (1996). https://doi.org/10.1557/JMR.1996.0150

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1996.0150

Navigation