Skip to main content
Log in

Elevated temperature deformation of fine-grained La0.9Sr0.1MnO3

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Compressive creep behavior of fine-grained (5 μm) La0.9Sr0.1MnO3 with a relative theoretical density between 85 and 90% was investigated over the temperature range 1150–1300 °C in air. The fine grain size, brief creep transients, stress exponent close to unity, and absence of deformation-induced dislocations, suggested that the deformation was controlled by a diffusional creep mechanism. The activation energy for creep of La0.9Sr0.1MnO3 was 490 kJ/mole. A comparison of the activation energy for creep of La0.9Sr0.1MnO3 with existing diffusion and creep data for perovskite oxides suggested that the diffusional creep of La0.9Sr0.1MnO3 was controlled by lattice diffusion of the cations, either lanthanum or manganese.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. A. M. Van Roosmalen and E. H. P. Cordfunke, J. Solid State Chem. 110, 106 (1994).

    Article  Google Scholar 

  2. J. H. Kuo, H. U. Anderson, and D. M. Sparlin, J. Solid State Chem. 83, 52 (1989).

    Article  CAS  Google Scholar 

  3. S. Otoshi, H. Sasaki, H. Ohnishi, M. Hase, K. Ishimaru, M. Ippommatsu, T. Higuchi, M. Miyayama, and H. Yanagida, J. Electrochem. Soc. 138, 1519 (1991).

    Article  CAS  Google Scholar 

  4. J. A. M. Van Roosmalen and E. H. P. Cordfunke, J. Solid State Chem. 110, 109 (1994).

    Article  Google Scholar 

  5. J. H. Kuo, H. U. Anderson, and D. M. Sparlin, J. Solid State Chem. 87, 55 (1990).

    Article  CAS  Google Scholar 

  6. M. Kertesz, I. Riess, D. S. Tannhauser, R. Langpape, and F. J. Rohr, J. Solid State Chem. 42, 125 (1982).

    Article  CAS  Google Scholar 

  7. S. Carter, A. Selcuk, R. J. Chater, J. Kajda, J. A. Kilner, and B. C. H. Steele, Solid State Ionics 53–56, 597 (1992).

    Article  Google Scholar 

  8. J. A. M. Van Roosmalen, J. P. P. Huijsmans, and L. Plomp, Solid State Ionics 66, 279 (1993).

    Article  Google Scholar 

  9. A. Hammouche, E. Siebert, and A. Hammou, Mater. Res. Soc. Bull. 24, 367 (1989).

    Article  CAS  Google Scholar 

  10. R. Koc and H. U. Anderson, J. Mater. Sci. 27, 5837 (1992).

    Article  CAS  Google Scholar 

  11. J. A. M. Van Roosmalen, E. H. P. Cordfunke, and J. P. P. Huijsmans, Solid State Ionics 66, 285 (1993).

    Article  Google Scholar 

  12. J. A. M. Van Roosmalen, E. H. P. Cordfunke, and R. B. Helmholdt, J. Solid State Chem. 110, 100 (1994).

    Article  Google Scholar 

  13. A. Belzner, T. M. Gur, and R. A. Huggins, Solid State Ionics, 40/41, 535 (1990).

    Article  Google Scholar 

  14. A. Chakraborty, P. Sujatha Devi, and H. S. Maiti, Mater. Lett. 20, 63 (1994).

    Article  CAS  Google Scholar 

  15. L. A. Chick, L. R. Pederson, G. D. Maupin, J. L. Bates, L. E. Thomas, and G. J. Exarhos, Mater. Lett. 10, 6 (1990).

    Article  CAS  Google Scholar 

  16. L. A. Chick, G. D. Maupin, and L. R. Pederson, NanoStructured Mater. 4, 603 (1994).

    Article  CAS  Google Scholar 

  17. J. L. Routbort, Acta Metall. 30, 663 (1982).

    Article  CAS  Google Scholar 

  18. H. Duong and J. Wolfenstine, Phys. Status Solidi A 129, 379 (1992).

    Article  CAS  Google Scholar 

  19. J. L. Routbort, Acta Metall. 27, 649 (1979).

    Article  CAS  Google Scholar 

  20. F. A. Mohamed and T. G. Langdon, Phys. Status Solidi A 33, 375 (1976).

    Article  CAS  Google Scholar 

  21. J. E. Dorn, in Modern Chemistry for the Engineer and Scientist, edited by W.D. Robertson (McGraw-Hill, New York, 1956), p. 276.

    Google Scholar 

  22. F. R. N. Nabarro, in Report of a Conference on Strength of Solids (The Physical Society, London, 1948), p. 75.

    Google Scholar 

  23. C. Herring, J. Appl. Phys. 21, 437 (1950).

    Article  Google Scholar 

  24. R. L. Coble, J. Appl. Phys. 34, 1679 (1963).

    Article  Google Scholar 

  25. B. Burton, Diffusional Creep of Polycrystalline Materials (Trans. Tech. Aedermansdorf, Switzerland, 1977).

    Book  Google Scholar 

  26. J. Cadek, Creep in Metallic Materials (Elsevier, New York, 1988).

    Google Scholar 

  27. J. P. Poirier, Creep of Crystals (Cambridge University Press, Cambridge, England, 1985).

    Book  Google Scholar 

  28. R. W. Evans and B. Wilshire, Introduction to Creep (The Institute of Materials, England, 1993).

    Google Scholar 

  29. O. D. Sherby and P. M. Burke, Prog. Mater. Sci. 13, 325 (1967).

    Google Scholar 

  30. A. K. Mukherjee, J. E. Bird, and J. E. Dorn, Trans. ASM 62, 155 (1969).

    CAS  Google Scholar 

  31. W. R. Cannon and T. G. Langdon, J. Mater. Sci. 23, 1 (1988).

    Article  CAS  Google Scholar 

  32. A. H. Chokshi and T. G. Langdon, J. Mater. Sci. Technol. 7, 577 (1991).

    Article  CAS  Google Scholar 

  33. A. H. Chokshi and T. G. Langdon, Defect and Diffusion Forum 66–69, 1205 (1989).

    Google Scholar 

  34. A. G. Evans and T. G. Langdon, Prog. Mater. Sci. 21, 171 (1976).

    Article  CAS  Google Scholar 

  35. J. A. M. Van Roosmalen, P. Van Vlaanderen, E. H. P. Cordfunke, W. L. Ijdo, and D. J. W. Ijdo, J. Solid State Chem. 114, 516 (1995).

    Article  Google Scholar 

  36. S. Beauchesne and J. P. Poirier, Phys. Earth Planet. Inter. 55, 187 (1989).

    Article  CAS  Google Scholar 

  37. S. Beauchesne and J. P. Poirier, Phys. Earth Planet. Inter. 61, 182 (1990).

    Article  Google Scholar 

  38. S. Karato and P. Li, Science 255, 1238 (1992).

    Article  CAS  Google Scholar 

  39. A. Ball and M. M. Hutchinson, Met. Sci. J. 3, 1 (1969).

    Article  Google Scholar 

  40. J. Harper and J.E. Dorn, Acta Metall. 5, 654 (1957).

    Article  CAS  Google Scholar 

  41. G. B. Gibbs, Mem. Sci. Rev. Met. 62, 1679 (1965).

    Google Scholar 

  42. T. A. Parthasarathy, T. Mah, K. Keller, J. Am. Ceram. Soc. 75, 1756 (1992).

    Article  CAS  Google Scholar 

  43. D. Dimos and D. L. Kohlstedt, J. Am. Ceram. Soc. 70, 531 (1987).

    Article  CAS  Google Scholar 

  44. I. E. Shimanovich, M. M. Pavlyuchenko, B. O. Filinov, and S. A. Prokudina, Vesti. Akad. Navuk B. SSR, Ser. Khim. Navuk 6, 61 (1969).

    Google Scholar 

  45. T. Ishigaki, S. Yamauchi, J. Mizusaki, K. Fueki, H. Naito, and T. Adachi, J. Solid State Chem. 110, 106 (1994).

    Article  Google Scholar 

  46. A. G. Verduch and R. Linder, Arh. Kem. 5, 313 (1953).

    CAS  Google Scholar 

  47. A. Yamaji, J. Am. Ceram. Soc. 58, 152 (1975).

    Article  CAS  Google Scholar 

  48. A. E. Paladino, L. G. Rubin, and J.S. Waugh, J. Phys. Chem. Solids 26, 391 (1965).

    Article  CAS  Google Scholar 

  49. R. Turlier, P. Bussier, and M. Prettre, C. R. Acad. Sci. Paris 250, 1649 (1960).

    CAS  Google Scholar 

  50. S. Sirasaki, H. Yamamura, H. Haneda, K. Kakegawa, and J. Moori, J. Chem. Phys. 73, 4640 (1980).

    Article  Google Scholar 

  51. P. Kofstad, Nonstoichiometry, Diffusion and Electrical Conductivity in Binary Metal Oxides (Wiley-Interscience, New York, 1972).

    Google Scholar 

  52. W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to Ceramics (Wiley-Interscience, New York, 1976).

    Google Scholar 

  53. J. Wolfenstine, unpublished work.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolfenstine, J., Armstrong, T.R., Weber, W.J. et al. Elevated temperature deformation of fine-grained La0.9Sr0.1MnO3 . Journal of Materials Research 11, 657–662 (1996). https://doi.org/10.1557/JMR.1996.0079

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1996.0079

Navigation