Skip to main content
Log in

Electronic structure study of new family of high-Tc Fe-superconductors based on BaFe2As2 in presence of dopants Rh and Pd.

  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

The superconductivity has a long history. One of the most recent discoveries is the superconductivity in the Febased family with antiferromagnetic state at ambient temperature. In this type of material, the transition to the superconductivity state was found in presence of different dopants. In this report we present the results of calculations of the cluster representing Ba4Fe5As8 in presence of Rh and Pd as dopants. The methodology of Embedded Cluster Method at the MP2 electron correlation level was employed. The population analysis showed two main features: the independence of charge density transfer from the spin density transfer and, the presence of orbitals with electron density but without spin density. The observed properties correspond to the RVB mechanism for the superconductivity transition proposed by Anderson for cuprates. This confirms our conclusions obtained in the same material doped by Co and Ni.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, J. Am. Chem. Soc. 130, 3296 (2008).

    Article  CAS  Google Scholar 

  2. H. Takahashi, K. Igawa, K. Arii, Y. Kamihara, M. Hirano, and H. Hosono, Nature (London) 453, 376 (2008).

    Article  CAS  Google Scholar 

  3. R.G. Stewart, Rev. Mod. Phys. 83, 1589 (2011).

    Article  CAS  Google Scholar 

  4. A.S. Sefat, R. Jin, M.A. McGuire, B.C. Sales, D.J. Singh, and D. Mandrus, Phys. Rev. Lett. 101, 117004 (2008).

    Article  CAS  Google Scholar 

  5. A.S. Sefat, D.J. Singh, Van L.H. Bebber, Y. Mozharivskyj, M.A. McGuire, R. Jin, B.C. Sales, V. Keppens, and D. Mandrus, Phys. Rev. B 79, 224524 (2009).

    Article  CAS  Google Scholar 

  6. A.S. Sefat, K. Marty, A.D. Christianson, B. Saparov, M.A. McGuire, M.D. Lumsden, W. Tian, and B.C. Sales, Phys. Rev. B 85, 024503 (2012).

    Article  CAS  Google Scholar 

  7. Y. Texier, Y. Laplace, P. Mendels, J.T. Park, G. Friemel, D.L. Sun, D.S. Inosov, C.T. Lin, and J. Bobroff, Eur. Phys. Lett. 99, 17002 (2012).

    Article  CAS  Google Scholar 

  8. P.C. Canfield, S.L. Bud’ko, N. Ni, J.Q. Yan, and A. Kracher, Phys. Rev. B 80, 060501 (2009).

    Article  CAS  Google Scholar 

  9. E.D. Mun, S.L. Bud’ko, N. Ni, A.N. Thaler, and P.C. Canfield, Phys. Rev. B 80, 054517 (2009).

    Article  CAS  Google Scholar 

  10. D.J. Singh and M.H. Du, Phys. Rev. Lett. 100, 237003 (2008).

    Article  CAS  Google Scholar 

  11. I.I. Mazin, D.J. Singh, M.D. Johannes, and M.H. Du, Phys. Rev. Lett. 101, 057003 (2008).

    Article  CAS  Google Scholar 

  12. F. Wang, D.-H. Lee, Science 332, 200 (2011).

    Article  CAS  Google Scholar 

  13. M.R. Norman, Science 332, 196 (2011).

    Article  CAS  Google Scholar 

  14. I.I. Mazin, D.J. Singh, M.D. Johannes, and M.H. Du, Phys. Rev. Lett. 101, 057003 (2008).

    Article  CAS  Google Scholar 

  15. P.A. Lee, N. Nagaosa, and X.-G. Wen, Rev. Mod. Phys. 78, 17 (2006).

    Article  CAS  Google Scholar 

  16. Q. Si and E. Abrahams, Phys. Rev. Lett. 101, 076401 (2008).

    Article  CAS  Google Scholar 

  17. W.-Q. Chen, K.-Y. Yang, Y. Zhou, and F.-C. Hang, Phys. Rev. Lett. 102, 047006 (2009).

    Article  CAS  Google Scholar 

  18. J. Soullard, R. Pérez-Enriquez, and I. Kaplan, Phys. Rev. B 91 184517 (2015).

    Article  CAS  Google Scholar 

  19. J. Soullard and I. Kaplan, J. Supercond. Nov. Magn. 29 3147 (2016).

    Article  CAS  Google Scholar 

  20. I.G. Kaplan, J. Soullard, Hernandez-J. Cobos, and R. Pandey, J. Phys.: Condens. Matter 11, 1049 (1999).

    CAS  Google Scholar 

  21. I.G. Kaplan, Hernandez-J. Cobos, and J. Soullard, Quantum Systems in Chemistry and Physics, 143–158 Kluwer Academic, Dordrecht (2000).

    Google Scholar 

  22. P.W. Anderson, Science 235, 1196 (1987).

    Article  CAS  Google Scholar 

  23. P.W. Anderson, G. Baskaran, Z. Zou, and T. Hsu, Phys. Rev. Lett. 58, 2790 (1987).

    Article  CAS  Google Scholar 

  24. I.G. Kaplan, “Intermolecular Interaction: Physical Picture, Computational Methods and Model Potentials”, John Wiley & Sons, Chichester, England, 2006, p. 367.

    Book  Google Scholar 

  25. N. Ni, A. Thaler, A. Kracher, J.Q. Yan, S.L. Bud’ko, and P.C. Canfield, Phys. Rev. B, 80, 24511 (2009).

    Article  CAS  Google Scholar 

  26. M. Rotter, M. Tegel, D. Johrendt, I. Schellenberg, W. Hermes, and R. Pöttgen, Phys. Rev. B 78, 020503 (2008).

    Article  CAS  Google Scholar 

  27. M.J. Frisch, et al., Gaussian 16, Revision A.03 Gaussian, Inc., Wallingford CT (2016).

    Google Scholar 

  28. W. Küchle, M. Dolg, H. Stoll, and H. Preuss, J. Chem. Phys., 100, 7535 (1994).

    Article  Google Scholar 

  29. M. Dolg, H. Stoll, A. Savin, and H. Preuss, Theo. Chem. Acc., 75, 173 (1989).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Columbié-Leyva, R., Soullard, J. & Kaplan, I.G. Electronic structure study of new family of high-Tc Fe-superconductors based on BaFe2As2 in presence of dopants Rh and Pd.. MRS Advances 4, 3365–3372 (2019). https://doi.org/10.1557/adv.2019.409

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2019.409

Navigation