Skip to main content
Log in

Improving the Time Stability of Superconducting Planar Resonators

  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Quantum computers are close to become a practical technology. Solid-state implementations based, for example, on superconducting devices strongly rely on the quality of the constituent materials. In this work, we fabricate and characterize superconducting planar resonators in the microwave range, made from aluminum films on silicon substrates. We study two samples, one of which is unprocessed and the other cleaned with a hydrofluoric acid bath and by heating at 880 °C in high vacuum. We verify the efficacy of the cleaning treatment by means of scanning transmission electron microscope imaging of samples’ cross sections. From 3 h-long resonator measurements at ≈ 10 mK and with ≈ 10 photonic excitations, we estimate the frequency flicker noise level using the Allan deviation and find an approximately tenfold noise reduction between the two samples; the cleaned sample shows a flicker noise power coefficient for the fractional frequency of ≈ 0.23 × 10-15. Our preliminary results follow the generalized tunneling model for two-level state defects in amorphous dielectric materials and show that suitable cleaning treatments can help the operation of superconducting quantum computers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Montanaro, “Quantum Algorithms: An Overview,” npj Quantum Information, vol. 2, p. 15023, 2016.

    Article  Google Scholar 

  2. T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum Computers,” Nature, vol. 464, no. 7285, pp. 45–53, 2010.

    Article  CAS  Google Scholar 

  3. J. Clarke and F. K. Wilhelm, “Superconducting Quantum Bits,” Nature, vol. 453, no. 7198, pp. 1031–1042, 2008.

    Article  CAS  Google Scholar 

  4. A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland, “Surface Codes: Towards Practical Large-Scale Quantum Computation,” Phys. Rev. A, vol. 86, no. 3, p. 032324, 2012.

    Article  Google Scholar 

  5. C. Müller, J. Lisenfeld, A. Shnirman, and S. Poletto, “Interacting Two-Level Defects as Sources of Fluctuating High-Frequency Noise in Superconducting Circuits,” Phys. Rev. B, vol. 92, p. 035442, 2015.

    Article  Google Scholar 

  6. P. V. Klimov, J. Kelly, Z. Chen, M. Neeley, A. Megrant, B. Burkett, R. Barends, K. Arya, B. Chiaro, Y. Chen, A. Dunsworth, A. Fowler, B. Foxen, C. Gidney, M. Giustina, R. Graff, T. Huang, E. Jeffrey, E. Lucero, J. Y. Mutus, O. Naaman, C. Neill, C. Quintana, P. Roushan, D. Sank, A. Vainsencher, J. Wenner, T. C. White, S. Boixo, R. Babbush, V. N. Smelyanskiy, H. Neven, and J. M. Martinis, “Fluctuations of Energy-Relaxation Times in Superconducting Qubits,” Phys. Rev. Lett., vol. 121, p. 090502, 2018.

    Article  CAS  Google Scholar 

  7. J. Burnett, A. Bengtsson, M. Scigliuzzo, D. Niepce, M. Kudra, P. Delsing, and J. Bylander, “Decoherence Benchmarking of Superconducting Qubits,” arXiv:1901.04417, 2019.

  8. S. Schlör, J. Lisenfeld, C. Müller, A. Schneider, D. P. Pappas, A. V. Ustinov, and M. Weides, “Correlating Decoherence in Transmon Qubits: Low Frequency Noise by Single Fluctuators,” arXiv:1901.05352, 2019.

  9. C. Müller, J. H. Cole, and J. Lisenfeld, “Towards Understanding Two-Level-Systems in Amorphous Solids - Insights from Quantum Devices,” arXiv:1705.01108, 2017.

  10. R. E. Collin, Foundations for Microwave Engineering - 2nd Edition, New York, NY, and Hoboken, NJ, USA: Institute of Electrical & Electronics Engineers (IEEE), Inc., and John Wiley & Sons, Inc., 2001.

    Book  Google Scholar 

  11. C. T. Earnest, J. H. Béjanin, T. G. McConkey, E. A. Peters, A. Korinek, H. Yuan, and M. Mariantoni, “Substrate Surface Engineering for High-Quality Silicon/Aluminum Superconducting Resonators,” Superconductor Science and Technology, vol. 31, no. 12, p. 125013, 2018.

    Article  Google Scholar 

  12. D. S. Wisbey, J. Gao, M. R. Vissers, F. C. S. da Silva, J. S. Kline, L. Vale, and D. P. Pappas, “Effect of Metal/Substrate Interfaces on Radio-Frequency Loss in Superconducting Coplanar Waveguides,” Journal of Applied Physics, vol. 108, no. 9, p. 093918, 2010.

    Article  Google Scholar 

  13. A. Megrant, C. Neill, R. Barends, B. Chiaro, Y. Chen, L. Feigl, J. Kelly, E. Lucero, M. Mariantoni, P. J. J. O’Malley, D. Sank, A. Vainsencher, J. Wenner, T. C. White, Y. Yin, J. Zhao, C. J. Palmstrøm, J. M. Martinis, and A. N. Cleland, “Planar Superconducting Resonators with Internal Quality Factors Above One Million,” Appl. Phys. Lett., vol. 100, no. 11, p. 113510, 2012.

    Article  Google Scholar 

  14. C. J. K. Richardson, N. P. Siwak, J. Hackley, Z. K. Keane, J. E. Robinson, B. Arey, I. Arslan, and B. S. Palmer, “Fabrication Artifacts and Parallel Loss Channels in Metamorphic Epitaxial Aluminum Superconducting Resonators,” Superconductor Science and Technology, vol. 29, no. 6, p. 064003, 2016.

    Article  Google Scholar 

  15. J. Burnett, A. Bengtsson, D. Niepce, and J. Bylander, “Noise and Loss of Superconducting Aluminium Resonators at Single Photon Energies,” Journal of Physics: Conference Series, vol. 969, no. 1, p. 012131, 2018.

    Google Scholar 

  16. J. A. Barnes, A. R. Chi, L. S. Cutler, D. J. Healey, D. B. Leeson, T. E. McGunigal, J. A. Mullen, W. L. Smith, R. L. Sydnor, R. F. C. Vessot, and G. M. R. Winkler, “Characterization of Frequency Stability,” IEEE Transactions on Instrumentation and Measurement, vols. IM-20, no. 2, pp. 105–120, 1971.

    Article  Google Scholar 

  17. S. E. de Graaf, L. Faoro, J. Burnett, A. A. Adamyan, A. Y. Tzalenchuk, S. E. Kubatkin, T. Lindström, and A. V. Danilov, “Suppression of Low-Frequency Charge Noise in Superconducting Resonators by Surface Spin Desorption,” Nature Communications, vol. 9, no. 1, 2018.

  18. J. H. Béjanin, T. G. McConkey, J. R. Rinehart, C. T. Earnest, C. R. H. McRae, D. Shiri, J. D. Bateman, Y. Rohanizadegan, B. Penava, P. Breul, S. Royak, M. Zapatka, A. G. Fowler, and M. Mariantoni, “Three-Dimensional Wiring for Extensible Quantum Computing: The Quantum Socket,” Phys. Rev. Applied, vol. 6, p. 044010, 2016.

    Article  Google Scholar 

  19. G. Calusine, A. Melville, W. Woods, R. Das, C. Stull, V. Bolkhovsky, D. Braje, D. Hover, D. K. Kim, X. Miloshi, D. Rosenberg, A. Sevi, J. L. Yoder, E. Dauler, and W. D. Oliver, “Analysis and Mitigation of Interface Losses in Trenched Superconducting Coplanar Waveguide Resonators,” Applied Physics Letters, vol. 112, no. 6, p. 062601, 2018.

    Article  Google Scholar 

  20. J. Gao, M. Daal, J. M. Martinis, A. Vayonakis, J. Zmuidzinas, B. Sadoulet, B. A. Mazin, P. K. Day, and H. G. Leduc, “A Semiempirical Model for Two-Level System Noise in Superconducting Microresonators,” Applied Physics Letters, vol. 92, no. 21, p. 212504, 2008.

    Article  Google Scholar 

  21. D. P. Pappas, M. R. Vissers, D. S. Wisbey, J. S. Kline, and J. Gao, “Two Level System Loss in Superconducting Microwave Resonators,” IEEE Transactions on Applied Superconductivity, vol. 21, no. 3, pp. 871–874, 2011.

    Article  CAS  Google Scholar 

  22. T. G. McConkey, J. H. Béjanin, C. T. Earnest, C. R. H. McRae, Z. Pagel, J. R. Rinehart, and M. Mariantoni, “Mitigating Leakage Errors due to Cavity Modes in a Superconducting Quantum Computer,” Quantum Science and Technology, vol. 3, no. 3, p. 034004, 2018.

    Article  Google Scholar 

  23. J. Mayer, L. A. Giannuzzi, T. Kamino, and J. Michael, “TEM Sample Preparation and FIB-Induced Damage,” MRS Bulletin, vol. 32, no. 5, pp. 400–407, 2007.

    Article  CAS  Google Scholar 

  24. X.-Y. Liu, I. Arslan, B. W. Arey, J. Hackley, V. Lordi, and C. J. K. Richardson, “Perfect Strain Relaxation in Metamorphic Epitaxial Aluminum on Silicon through Primary and Secondary Interface Misfit Dislocation Arrays,” ACS Nano, vol. 12, no. 7, pp. 6843–6850, 2018.

    Article  CAS  Google Scholar 

  25. W. J. Riley, Handbook of frequency stability analysis, National Institute of Standards and Technology, 2008.

  26. T. Lindström, J. Burnett, M. Oxborrow, and A. Y. Tzalenchuk, “Pound-Locking for Characterization of Superconducting Microresonators,” Review of Scientific Instruments, vol. 82, no. 10, p. 104706, 2011.

    Article  Google Scholar 

  27. J. Proakis and D. K. Manolakis, Digital Signal Processing: Principles, Algorithms, and Applications - 4th Edition, London, UK: Pearson plc., 2007.

    Google Scholar 

  28. P. W. Anderson, B. I. Halperin, and C. M. Varma, “Anomalous Low-Temperature Thermal Properties of Glasses and Spin Glasses,” The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics, vol. 25, no. 1, pp. 1–9, 1972.

    Article  CAS  Google Scholar 

  29. W. A. Phillips, Amorphous Solids: Low-Temperature Properties - edited by W. A. Phillips; with contributions by A. C. Anderson, Springer-Verlag Berlin; New York, 1981.

    Chapter  Google Scholar 

  30. W. A. Phillips, “Two-Level States in Glasses,” Reports on Progress in Physics, vol. 50, no. 12, p. 1657, 1987.

    Article  CAS  Google Scholar 

  31. E. D. Black, “An Introduction to Pound–Drever–Hall Laser Frequency Stabilization,” American Journal of Physics, vol. 69, no. 1, pp. 79–87, 2001.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moeed, M.S., Earnest, C.T., Béjanin, J.H. et al. Improving the Time Stability of Superconducting Planar Resonators. MRS Advances 4, 2201–2215 (2019). https://doi.org/10.1557/adv.2019.262

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2019.262

Navigation