Skip to main content
Log in

Hexagonal Boron Nitride Single Crystal Thermal Oxidation and Etching in Air: An Atomic Force Microscopy Study

  • Articles
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Hexagonal boron nitride (hBN), a two dimensional (2D) material, has emerged as an important substrate and dielectric for electronic, optoelectronic, and photonic devices based on graphene and other atomically thin two dimensional materials. Here we report on the initial oxidation of (0001) hBN single crystals in ambient air as functions of temperature and time, as determined by atomic force microscopy (AFM) and scanning electron microscope with energy dispersive X-ray spectroscopy (SEM/EDS). For oxidation times of 20 minutes, the first evidence of oxidation appears at 900°C, with the formation of shallow, hexagonal-, and irregular-shaped pits that are less than 100 nm across and several nanometer deep. Oxidation at 1100°C for 20 minutes produced 1.0–2.0-micron size pits with flat and pointed bottoms that were approximately hexagonal-shaped, but with rough and irregular edges, and multiple interior steps. Oxidation was not uniform on the surface of hBN, but starts where dislocations in the crystal intersected the surfaces. Pit depth increased linearly with temperature and oxidation times. In addition to the surface pits, small particles formed on the surface. Elemental analysis of the thermally oxidized hBN crystals by SEM/EDS revealed the major elements of these particles were boron and oxygen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. G. Cassabois, P. Valvin, and B. Gil, Nature Photonics 10, 262–268 (2016).

    Article  CAS  Google Scholar 

  2. L. Song, L. Ci, H. Lu, P. B. Sorokin, C. Jin, J. Ni, A. G. Kvashnin, D. G. Kvashnin, Lou, B. I. Yakobson, and P. M. Ajayan, Nano Lett. 10, 3209 (2010).

    Article  CAS  Google Scholar 

  3. C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone, Nature Nanotechnol. 5, 722 (2010).

    Article  CAS  Google Scholar 

  4. R. Y. Tay, M. H. Griep, G. Mallick, S. H. Tsang, R. S. Singh, T. Tumlin, E. H. T. Teo, and S. P. Karna, Nano Lett. 14 (2), 839–846 (2014).

    Article  CAS  Google Scholar 

  5. S. K. Jang, J. Youn, Y. J. Song, S. Lee, Sci. Rep., 6 30449 (2016).

    Article  CAS  Google Scholar 

  6. K. K. Kim, A. Hsu, X. Jia, S. M. Kim, Y. Shi, M. Dresselhaus, T. Palacios, and J. Kong, ACS Nano 6 (10), 8583–8590 (2012).

    Article  CAS  Google Scholar 

  7. K. H. Lee, H. J. Shin, J. Lee, I. Y. Lee, G. H. Kim, J. Y. Choi, and S. W. Kim, Nano Lett. 12, 714–718 (2012).

    Article  CAS  Google Scholar 

  8. J. Xue, J. S. Yamagishi, D. Bulmash, P. Jacquod, A. Deshpande, K. Watanabe, T. Taniguchi, P. J. Herrero & B. J. LeRoy, Nature Mater. 10, 282–285 (2011).

    Article  CAS  Google Scholar 

  9. R. Decker, Y. Wang, V. W. Brar, W. Regan, H. Z. Tsai, Q. Wu, W. Gannett, A. Zettl, M. F. Crommie, Nano Lett. 11(6), 2291–2295 (2011).

    Article  CAS  Google Scholar 

  10. W. Gannett, W. Regan, K. Watanabe, T. Taniguchi, M. Crommie, A. Zettl, Appl. Phys. Lett.

    Article  Google Scholar 

  11. H.Y. Nan, Z.H. Ni, J. Wang, Z. Zafar, Z.X. Shi, and Y.Y. Wang, J. Raman Spectroscopy 44, 1018–1021 (2013).

    Article  CAS  Google Scholar 

  12. X. Li, J. Yin, J. Zhou, W. Guo, Nanotechnology 25, 105701 (2014).

    Article  Google Scholar 

  13. Z. Liu, Y. Gong, W. Zhou, L. Ma, J. Yu, J. C. Idrobo, J. Jung, A. H. MacDonald, R. Vajtai, J. Lou, and P. M. Ajayan, Nature Communications 4, 2541 (2013).

    Article  Google Scholar 

  14. F. Mahvash, S. Eissa, T. Bordjiba, A. C. Tavares, T. Szkopek, M. Siaj, Sci. Rep., 7, 42139. (2017).

    Article  CAS  Google Scholar 

  15. A. Garcia, M. Neumann, F. Amet, J. R Williams, K. Watanabe, T. Taniguchi, D. G Goldhaber, Nano Lett. 12. 4449–54 (2012).

    Article  CAS  Google Scholar 

  16. L. H. Li, J. Cervenka, K. Watanabe, T. Taniguchi, Y. Chen, ACS Nano 8(10), 1457–1462 (2014).

    Article  CAS  Google Scholar 

  17. S.-K. Son, M. Šiškins, C. Mullan, J. Yin, V.G. Kravets, A. Kozikov, S. Ozdemir, M. Alhazmi, M. Holwill, K. Watanabe, T. Taniguchi, D. Ghazaryan, K.S. Novoselov, V.I. Fal’ko1, and A. Mishchenko, 2D Mater. 5 11006 (2018).

    Article  Google Scholar 

  18. T.B. Hoffman, B. Clubine, Y. Zhang, K. Snow, J.H. Edgar, Journal of Crystal Growth. 393, 114–118 (2014).

    Article  CAS  Google Scholar 

  19. T.B. Hoffman, Y. Zhang, J.H. Edgar, N Khan, and R. Szoszkiewicz, Materials Science & Technology, 1591–1598 (2014).

  20. J.D. Caldwell, T. J. Anderson, J. C. Culbertson, G. G. Jernigan, K. D. Hobart, F. J. Kub, M. J. Tadjer, J. L. Tedesco, J. K. Hite, M. A. Mastro, R. L. M. Ward, C. R. Eddy Jr., P. M. Campbell, and D. K. Gaskill, ACS Nano 4, 1108–1114 (2010).

    Article  CAS  Google Scholar 

  21. J. H. Edgar, S. Liu, T. Hoffman, Yichao Zhang, M. E. Twigg, N. D. Bassim, S. Liang, and N. Khan, J. Appl. Phys 122, 225110 (2017).

    Article  Google Scholar 

  22. K. Oda, T. Yoshio, J. Mater. Sci. 28, 6562–6566 (1993).

    Article  CAS  Google Scholar 

  23. K. Oda, K. Aoki, S. Inada, M. Nagae and T. Yoshio, J. Ceram. Soc. Jpn. 111, 0081–0082 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, N., Nour, E., Mondoux, J. et al. Hexagonal Boron Nitride Single Crystal Thermal Oxidation and Etching in Air: An Atomic Force Microscopy Study. MRS Advances 4, 601–608 (2019). https://doi.org/10.1557/adv.2018.667

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2018.667

Navigation