Skip to main content

Advertisement

Log in

Green synthesis of chitosan capped silver nanoparticles and their antimicrobial activity

  • Articles
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Chitosan is a polymeric compound with functional groups which enable surface binding to nanoparticles and antibacterial activity. The antimicrobial activity was studied using silver nanoparticles with varied concentrations of chitosan. The nanoparticles were synthesized through a simple and environmentally friendly method at room temperature. Spherical particles with average sizes between 2 and 6 nm were obtained and their crystallinity showed a face-centered cubic phase. The evidence of chitosan presence on the nanoparticle surface was confirmed by the characteristic diffraction peak of chitosan and by FTIR spectra where the bonding of amine group could be depicted. The chitosan-capped silver nanoparticles showed good antibacterial and antifungal activities with MIC values between 0.20 and 1.5 mg.mL-1 compared to those obtained from most of references (up to 6.25 mg.mL-1) on the selected gram-positive (Staphylococcus aureus, Enterococcus faecalis), gram-negative (Klebsiella pneumoniae, Pseudomonas aeruginosa ) bacteria and fungi (Candida albicans, Cryptococcus neoformans).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Mody V. V., Siwale R., Singh A., Mody H. R., 2010, Introduction to metallic nanoparticles. J. Pharm. Bioallied Sci. 2, 282–289.

    Article  CAS  Google Scholar 

  2. Cuenya B. R., 2010, Synthesis and catalytic properties of metal nanoparticles: Size, shape, support, composition and oxidation state effects, Thin Solid Films, 518, 3127–3150.

    Article  CAS  Google Scholar 

  3. Manikadan A., 2015, Green synthesis of copper-chitosan nanoparticles and study of its antimicrobial activity. J. NanoMed. & Nanotech., 2015, 1–6.

    Google Scholar 

  4. Vines F., Gomes J. R., Illas F., 2014, Understanding the reactivity of metallic nanoparticles beyond the extended surface model for catalysis, Chem. Soc. Rev., 43, 4922–4939.

    Article  CAS  Google Scholar 

  5. Li L. and Zhu Y., 2006, High chemical reactivity of silver nanoparticles toward hydrochloric acid. J. Coll. Interfac. Sci., 303, 415–418.

    Article  CAS  Google Scholar 

  6. Suganya, U., Govindaraju, K.S., Ganesh Kumar, V. Stalin Dhas, T. Karthick, V. Singaravelu, G., 2015, Size controlled biogenic silver nanoparticles as antibacterial agent against isolates from HIV infected patients, Spectrochimica Acta Part A: Mol. and Biomol. Spec., 144, 266–272.

    Article  CAS  Google Scholar 

  7. Dizai S. M., Lotfipou F., Barzegar-Jalali M., Zarrintan M. H., Adibkia K., 2014, Antimicrobial activity of metals and metal oxide nanoparticles. Mater. Sci. and Eng. C, 44, 278–284.

    Article  Google Scholar 

  8. Salem W., Leiner D. R., Zingl F. G., Schratter G., Prassl R, Goessler W, Reidl J., Schild S., 2015, Antibacterial activity of silver and zinc nanoparticles against Vibrio cholerae and enterotoxic Escherichia coli. Int. J. Med. Microbio., 305, 85–95.

    Article  CAS  Google Scholar 

  9. Abou El-Nour K. M., Eftaiha A., Al-Warthan A., Ammar R. A., 2010, Synthesis and applications of silver nanoparticles, Arab. J. Chem., 3, 135–140.

    Article  CAS  Google Scholar 

  10. Iravani S., Korbekadi H., Mirmohammadi S. V., Zolfaghari B., 2014, Synthesis of silver nanoparticles: chemical, physical and biological methods, Res. Pharm. Sci., 9, 385–406.

    CAS  Google Scholar 

  11. Rashid, M. I., Mujawar, L. H., Mujallid, M. I., Shahid, M., Rehan, Z. A., Khan, M. K. I. and Ismail, I. M. I. 2017. Potent bactericidal activity of silver nanoparticles synthesized from Cassia fistula fruit, Microb Pathog, 107, 354–360.

    Article  CAS  Google Scholar 

  12. Jalali, S. A. H. and Allafchian, A. R. 2016, Assessment of antibacterial properties of novel silver nanocomposite. Journal of the Taiwan Institute of Chemical Engineers, 59, 506–513.

    Article  CAS  Google Scholar 

  13. Tsuji T, Iryo K, Watanabe N, Tsuji M. 2002, Preparation of silver nanoparticles by laser ablation in solution: influence of laser wavelength on particle size, Appl Surf Sci. 202, 80–85.

    Article  CAS  Google Scholar 

  14. Jung J, Oh H, Noh H, Ji J, Kim S. 2006, Metal nanoparticle generation using a small ceramic heater with a local heating area, J Aerosol Sci. 37, 1662–1670.

    Article  CAS  Google Scholar 

  15. Mafune F, Kohno J, Takeda Y, Kondow T, Sawabe H. 2000, Structure and stability of silver nanoparticles in aqueous solution produced by laser ablation, J Phys Chem B. 104, 8333–8337.

    Article  CAS  Google Scholar 

  16. Kruis F, Fissan H and Rellinghaus B. 2000, Sintering and evaporation characteristics of gas-phase synthesis of size-selected PbS nanoparticles, Mater Sci Eng B., 69, 329–334.

    Article  Google Scholar 

  17. Jung J., Oh H., Noh H., Ji J., Kim S., 2006, Metal nanoparticle generation using a small ceramic heater with a local heating area. J. Aerosol Sci., 37, 1662–1670.

    Article  CAS  Google Scholar 

  18. Sharma V. K., Yingard R. A., Lin Y., 2009, Silver nanoparticles: green synthesis and their antimicrobial activities. Advance in colloid and interface science. 145, 83–96

    Article  CAS  Google Scholar 

  19. Li Y., Gan W., Zhou J., Lu Z., Yang C., Ge T., 2015, Hydrothermal synthesis of silver nanoparticles in Arabic gum aqueous solutions, 25, Trans. Nonferrous Met. Soc. China, 25, 2081–2086.

    Article  CAS  Google Scholar 

  20. Praveenkumar K., Rabinal M. K., Kalasad M. N., Sankarappa T., Bedre M. D., 2014, Chitosan capped silver nanoparticles used as pressure sensors, J. Appl. Phys., 5, 43–51.

    Google Scholar 

  21. Mat Zain N., Stapley A. G. F., Shama, G., 2014, Green synthesis of silver and copper nanoparticles using ascorbic acid and chitosan for antimicrobial applications. Carbohydrate polymers., 112, 195–202.

    Article  Google Scholar 

  22. Sibiya, P. N., Moloto, M. J., 2014, Effect of concentration and pH on the size and shape of starch capped silver selenide nanoparticles. Chalcogenide Lett., 11, 577–588.

    CAS  Google Scholar 

  23. Kumirska J., Weinhold M., Thoming J., Stepnowski P., 2011, Biomedical activity of chitin/chitosan based materials-influence of physicochemical properties apart from molecular weight and degree of N-Acetylation, Polymers, 3, 1875–1901.

    Article  CAS  Google Scholar 

  24. Dutta P. K., Dutta S., Tripathi V. S., 2004, Chitin and Chitosan: chemistry, properties and applications, J. Sci. Ind. Res., 63, 20–31.

    CAS  Google Scholar 

  25. Jayakumar R., Menon D., Manzoor K., Nair S. V., Tamura H., 2010, Biomedical applications of chitin and chitosan based nanomaterials - A short review, Carb. Pol., 82, 227–232.

    Article  CAS  Google Scholar 

  26. Silver, L.L., 2011, Challenges of antibacterial discovery, Clin. Microbiol. Rev., 24, 71–109.

    Article  CAS  Google Scholar 

  27. Meyer W. G., Pavlin J. A., Hospenthal D., Murray C. K., Jerke K., Hawksworth A., Metzgar D., Myers T., Walsh D., Wu M., Ergas R., Chukwuma U., Tobias S., Klena J., Nakhla I., Talaat M., Maves R., Ellis M., Wortmann G., Blazes D. L., Lindler L., 2011, Antimicrobial resistance surveillance in the AFHSC-GEIS network. BMC public health, 11, 1471–2458.

    Article  Google Scholar 

  28. Kanungo R., 2009, Antibiotic resistance- the modern epidemic current status and research issues, India J. Med. Microbio., 27, 386–387.

    Google Scholar 

  29. Rossolini G. M., Arena F., Pecile P., Pollini S., 2014, Update on the antibiotic resistance crisis, Curr. Opin. Pharm., 18, 56–60.

    Article  CAS  Google Scholar 

  30. Ventola C. L., 2015, The Antibiotic Resistance Crisis. Part 1: Causes and Threats. Pharmacy and Therapeutics, 40, 277–283.

    Google Scholar 

  31. Gross M., 2013, Antibiotics in crisis. Current Biology, 23, R1063-R1063.

    Article  CAS  Google Scholar 

  32. Eloff J.N., 1998, A sensitive and quick microplate method to determine the minimal inhibitory concentration of plant extracts for bacteria, Planta Medica, 64, 711–713.

    Article  CAS  Google Scholar 

  33. Eloff J. N., Masoko J., Picard J., 2007, Resistance of animal fungal pathogens to solvents used in bioassays. S. Afr. J. Bot., 73, 667–669.

    Article  CAS  Google Scholar 

  34. Salton M. R., 1953, Studies of the bacterial cell wall: IV. The composition of the cell walls of some gram-positive and gram-negative bacteria, Biochimica at biophysica Acta, 10, 512–523.

    Article  CAS  Google Scholar 

  35. Jiang L., 2011, Comparison of disk diffusion, agar dilution and broth microdilution for antimicrobial susceptibility testing of five chitosans. MSc Dissertation at B.S, Fujian Agricultural and Forestry University, China, 48–49.

  36. Akmaz S., Adjgüze L., Yasar E. D., Erguven M. O., 2013, The effect of Ag content of the chitosan-silver nanoparticle composite material on the structure and antibacterial activity. Adv. Mater. Sci. Eng., 2013, 1–6.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makwena Justice Moloto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nate, Z., Moloto, M.J., Mubiayi, P.K. et al. Green synthesis of chitosan capped silver nanoparticles and their antimicrobial activity. MRS Advances 3, 2505–2517 (2018). https://doi.org/10.1557/adv.2018.368

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2018.368

Navigation