Skip to main content
Log in

Self-Driven Graphene Tearing and Peeling: A Fully Atomistic Molecular Dynamics Investigation

  • Articles
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

In spite of years of intense research, graphene continues to produce surprising results. Recently, it was experimentally observed that under certain conditions graphene can self-drive its tearing and peeling from substrates. This process can generate long, micrometer sized, folded nanoribbons without the action of any external forces. Also, during this cracking-like propagation process, the width of the graphene folded ribbon continuously decreases and the process only stops when the width reaches about few hundreds nanometers in size. It is believed that interplay between the strain energy of folded regions, breaking of carbon-carbon covalent bonds, and adhesion of graphene-graphene and graphene-substrate are the most fundamental features of this process, although the detailed mechanisms at atomic scale remain unclear. In order to gain further insights on these processes we carried out fully atomistic reactive molecular dynamics simulations using the AIREBO potential as available in the LAMMPS computational package. Although the reported tearing/peeling experimental observations were only to micrometer sized structures, our results showed that they could also occur at nanometer scale. Our preliminary results suggest that the graphene tearing/peeling process originates from thermal energy fluctuations that results in broken bonds, followed by strain release that creates a local elastic wave that can either reinforce the process, similar to a whip cracking propagation, or undermine it by producing carbon dangling bonds that evolve to the formation of bonds between the two layers of graphene. As the process continues in time and the folded graphene decreases in width, the carbon-carbon bonds at the ribbon edge and interlayer bonds get less stressed, thermal fluctuations become unable to break them and the process stops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, A. K. Geim, Proc. Natl. Acad. Sci. U.S.A. 102, 10451 (2005).

    Article  CAS  Google Scholar 

  2. C. Lee, X. Wei, J. W. Kysar and J. Hone, Science 321, 385 (2008).

    Article  CAS  Google Scholar 

  3. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).

    Article  CAS  Google Scholar 

  4. S. Park and R. S. Ruoff, Nat. Nanotechnol. 4, 217 (2009).

    Article  CAS  Google Scholar 

  5. R. Balog, B. Jørgensen, L. Nilsson, M. Andersen, E. Rienks, M. Bianchi, M. Fanetti, E. Lægsgaard, A. Baraldi, S. Lizzit, Z. Sljivancanin, F. Besenbacher, B. Hammer, T. G. Pedersen, P. Hofmann, and L. Hornekær, Nat. Mater. 9, 315 (2010).

    Article  CAS  Google Scholar 

  6. R.H. Baughman, H. Eckhardt, M. Kertesz, J. Chem. Phys. 87, 6687 (1987).

    Article  CAS  Google Scholar 

  7. R. S. Edwards and K. S. Coleman, Nanoscale 5, 38 (2013).

    Article  CAS  Google Scholar 

  8. D. Akinwande, C. J. Brennan, J. S. Bunch, P. Egberts, J. R. Felts, H. Gao, R. Huang, J. –S. Kim, T. Li, Y. Li, K. M. Liechti, N. Lu, H. S. Park, E. J. Reed, P. Wang, B. I. Yakobson, T. Zhang, Y. –W. Zhang, Y. Zhou and Y. Zhu, Extreme Mechanics Letters 13, 42 (2017).

    Article  Google Scholar 

  9. X. Li, L. Tao, Z. Chen, H. Fang, X. Li, X. Wang, J. –B. Xu and H. Zhu, Appl. Phys. Rev. 4, 021306 (2017).

    Article  Google Scholar 

  10. A. F. Fonseca, T. Liang, D. Zhang, K. Choudhary, S. R. Phillpot and S. B. Sinnott, ACS Appl. Mater. Interfaces 9, 33288 (2017).

    Article  CAS  Google Scholar 

  11. B. Amorim, A. Cortijo F. de Juan, A. G. Grushin, F. Guinea, A. Gutiérrez-Rubio, H. Ochoa, V. Parente, R. Roldán, P. San-Jose, J. Schiefele, M. Sturla and M. A. H. Vozmediano, Phys. Rep. 617, 1 (2016).

    Article  CAS  Google Scholar 

  12. A. R. Muniz and A. F. Fonseca, J. Phys. Chem. C 119, 17458 (2015).

    Article  CAS  Google Scholar 

  13. D. G. Papageorgiou, I. A. Kinloch and Robert J. Young, Progress in Materials Science 90, 75 (2017).

    Article  CAS  Google Scholar 

  14. T. Zhang, X. Li and H. Gao, Int. J. Fract. 196, 1 (2015).

    Article  Google Scholar 

  15. J. Annett and G. L. W. Cross, Nature 535, 271 (2016).

    Article  CAS  Google Scholar 

  16. E. Hamm, P. Reis, M. Leblanc, B. Roman and E. Cerda, Nature Materials 7, 386 (2008).

    Article  CAS  Google Scholar 

  17. D. W. Brenner, O. A. Shenderova, J. A. Harrison, S. J. Stuart, B. Ni and S. B. Sinnott, J. Phys.: Condens. Matter 14, 783 (2002).

    CAS  Google Scholar 

  18. LAMMPS - Molecular Dynamics Simulator. Available at http://lammps.sandia.gov (accessed 9 December 2017).

  19. A. Goriely and T. McMillen, Phys. Rev. Lett. 88, 244301 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fonseca, A.F., Galvão, D.S. Self-Driven Graphene Tearing and Peeling: A Fully Atomistic Molecular Dynamics Investigation. MRS Advances 3, 463–468 (2018). https://doi.org/10.1557/adv.2018.120

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2018.120

Navigation